ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Аккумуляторы тепла для теплиц


Какие бывают аккумуляторы тепла для теплиц из поликарбоната

Ранней весной рассада, высаженная в теплицу или парник, часто страдает от возвратных заморозков. Не у всех огородников имеются возможности сделать обогрев тепличных сооружений с использованием печей, электричества или газа. Это дорого и требует постоянного контроля, который дачники не могут организовать, бывая на своих участках наездами. И здесь на помощь могут прийти простые и недорогие аккумуляторы тепла для теплиц и парников.

Что представляет собой простейший аккумулятор тепла

Эти устройства предназначены для накапливания тепла в период активного солнца и последующей ее отдачи в холодное время суток. От традиционных аккумуляторов, которые используются в различных отопительных приборах или автомобилях, устройства для обогрева теплиц и парников кардинально отличаются по материалу изготовления, в качестве которого используются:

  • Трубы из пластика.
  • Натуральный или искусственный камень.
  • Рукава из полиэтиленовой пленки черного цвета.
  • Пластиковые емкости и прочие предметы, способные удерживать воду.

Принцип солнечного отопления теплицы водой

Работа подобного устройства основана на использовании обычной воды, которая заливается внутрь рукава или емкости. В дневное время, когда солнце светит ярко, в условиях теплицы даже ранней весной создается высокая температура, иногда доходящая до +25-30 градусов. Естественно, что вода также нагревается до высокой температуры днем и отдает свое тепло ночью, прогревая воздух и почву в теплице. Таким образом, если на улице ночью будет – 3 градуса, то в теплице с аккумулятором тепла температура сохранится на уровне + 3-4 градуса, в результате чего рассада не погибнет, и труды огородника не пойдут прахом. Большего эффекта при обогреве теплицы солнечной энергией можно добиться, если использовать емкости темного цвета, лучше всего черного.

Примером может послужить летний душ, над которым устанавливают бочки черного или темного цвета.

Теплоаккумулятор для теплицы или парника своими руками

Сохранение тепла в теплице можно организовать, если использовать рукав из полиэтиленовой пленки для аккумулятора тепла в парнике или теплице, пластиковые бутылки или купить аккумулятор тепла лежебока.


При использовании рукава, придется самостоятельно сделать герметичную заглушку на концах рукава, что не всегда удается, учитывая толщину пленки, которая достигает 200 – 250 микрон.  Вода может потихоньку просачиваться и тогда придется ее постоянно подливать. Это можно назвать минусом, но в плюсе то, что рукав можно отрезать любой длины, в то время как готовое изделии «Лежебока» выпускается определенной длины, которой может не хватить, если размеры теплицы значительные. Да и стоимость рукава в десятки раз меньше готового изделия.

Однако готовое приспособление обладает существенным преимуществом:

  • Герметично запаянные торцы рукава.
  • Наличие отверстия с пробкой, куда можно легко подливать воду.

И рукава и лежебоку располагают на грядках теплицы в нужном направлении, чтобы не повредить рассаду.

Альтернативные способы сохранения тепла в теплице

Учитывая, что работа теплоаккумулятора основана на свойстве накапливать солнечное тепло и отдавать его постепенно, то для изготовления подобных устройств своими руками вполне подойдут камни, галька, песок или кирпичи. Наверняка многие замечали, что поздним вечером после жаркого дня стены кирпичного дома, песок на пляже или вода в реке, озере длительное время сохраняют дневное тепло. Точно такой же эффект все вышеназванные материалы могут показывать и в теплице или парнике, защищая от холода нежную рассаду.

Большие камни можно разложить на грядках по периметру, песок рассыпать по всей площади после высадки рассады. В дальнейшей эксплуатации теплицы в летнее время  песок еще будет играть роль разрыхлителя, если грунт тяжелый.

Полые пластиковые трубы вкапывают вертикально в почву грядок или на дорожках. За день воздух, находящийся в трубах, хорошо прогреется солнечным теплом, а ночью при понижении температуры устремится наверх, соблюдаю закон физики и обогревая внутренне пространство теплицы.

Но, по мнению многих огородников лучший аккумулятор тепла для теплиц – рукав полиэтиленовый черный, который и стоит недорого и использовать его можно в парниках и теплицах любого размера. В заключение предлагаю посмотреть видео про организацию обогрева теплиц своими руками.

Геотермальное тепло для теплиц - Farm Energy

Почва и вода под землей содержат огромный резервуар тепловой энергии. Геотермальные системы отопления рекуперируют эту энергию и преобразуют ее в тепло, которое можно использовать в теплицах и других зданиях. Ресурсы геотермального тепла можно разделить на три категории: низкотемпературные, средние и высокотемпературные.

Типы геотермальных ресурсов

  • Низкая температура (50 ° F +/-) . Температура почвы на поверхности значительно меняется в течение года и тесно связана с температурой воздуха.На глубине от 5 до 6 футов температура более однородна, в среднем около 50 ° F с вариациями, которые зависят от характеристик почвы и условий окружающей среды над уровнем земли. Между максимальной температурой поверхности и максимальной температурой почвы на этом уровне существует интервал около 8 недель, который полезен для зимнего обогрева и летнего охлаждения. Для тепличного выращивания многолетних растений, зелени, саженцев и некоторых овощей. Этот воздух с низким содержанием почвы может быть нагрет либо напрямую, либо, для обогрева теплицы до более высокой температуры, можно использовать тепловой насос.Тепловые насосы доступны в виде систем воздух-воздух, воздух-вода, вода-вода или вода-воздух.
  • Среднетемпературная (140-300 ° F) . Термальные колодцы и источники в некоторых частях мира могут обеспечивать горячую воду, которую можно использовать непосредственно для обогрева. Десятки тепличных хозяйств в штатах Роки-Маунтин и Западное побережье отапливаются геотермальной энергией средней температуры. Нагретая вода, поступающая из-под земли, распределяется за счет излучения ребер или нагрева корневой зоны.
  • Высокая температура (> 300 °) . Пар из гейзеров в Калифорнии, Неваде и Юте используется для выработки электроэнергии, но не для отопления теплиц. В настоящее время в эксплуатации находится около 20 объектов, еще несколько строятся. Они производят мощность 5-8 центов / кВт-час.

Системы отопления теплиц

В большинстве районов страны экономичным выбором для геотермального отопления является низкотемпературное отопление, поскольку оно обеспечивает разумную окупаемость, обычно десять лет или меньше, в зависимости от конструкции системы и стоимости замененного ископаемого топлива.Прежде чем рассматривать установку геотермальной системы, важно тщательно рассчитать предполагаемую окупаемость вашей ситуации и принять меры по энергосбережению, которые обычно окупаются всего за несколько лет. К ним относятся: уменьшение проникновения воздуха, установка энергетических завес, изоляция боковых стен и периметра фундамента, эффективное использование растущего пространства и установка электронного контроля окружающей среды. Эти меры следует предпринять в первую очередь, поскольку они могут значительно снизить потери тепла и, таким образом, уменьшить размер геотермальной системы отопления, необходимой для обогрева теплицы.

Пневматические системы

Траншеи выкопаны для установки труб, которые будут собирать тепло из-под земли. Фото: Джон Барток-младший, Университет Коннектикута,

.

Земляные трубы - это трубопровод, который проложен на глубине от 6 до 12 футов под поверхностью почвы. Самые простые и недорогие системы собирают тепло зимой, всасывая воздух через гофрированные пластиковые трубы и направляя его в обогреваемое пространство. Воздух, проходящий по трубкам, нагревается почвой, имеющей более высокую температуру, чем воздух.Летом систему можно использовать для охлаждения строительного пространства путем втягивания наружного воздуха в теплицу через заглубленные трубы. Тепло поглощается более холодной землей.

Например, средняя температура почвы на 8 футов ниже поверхности в центральном Массачусетсе колеблется от 60 ° F в начале осени до 46 ° F в начале марта. Для повышения температуры воздуха от 80 ° до 90 ° F для обогрева декоративных растений или клумб можно использовать тепловой насос воздух-воздух. Тепловой насос работает как реверсивный холодильник: он может нагревать или охлаждать воздух, используемый для поддержания оптимальной среды выращивания.

Гидравлические системы

Жидкие системы обычно используют тепло почвы или тепло из колодца, пруда или другого водоема для нагрева жидкости, такой как пропиленгликоль или метиловый спирт, в замкнутой системе, из которой отбирается тепло.


Фото: Джон Барток-младший, Университет Коннектикута.

При наличии достаточного количества земли можно использовать горизонтальные петли для отвода тепла от грунта. Трубы укладываются в траншеи длиной до 400 футов.Несколько контуров используются для улавливания количества тепла, необходимого для обогрева теплицы (ей).

Вертикальные петли - альтернатива там, где площадь участка ограничена. В этом случае буровое оборудование используется для бурения скважин малого диаметра глубиной от 75 до 500 футов. Яму можно заполнить раствором для передачи тепла почвы трубам.

Замкнутые системы

В системах с замкнутым контуром раствор антифриза циркулирует по петлям подземных труб малого диаметра. В холодную погоду этот раствор поглощает тепло от земли и переносит его в теплообменник, который отводит тепло.Раствор также может поступать в тепловой насос, который усиливает повышение температуры.

Системы с замкнутым контуром, использующие пруд или озеро, экономичны в установке, когда поблизости находится водоем. Эта система исключает затраты на земляные работы. Антифриз циркулирует по змеевикам трубы, которые размещены на дне пруда или озера. Глубина не менее 12 футов необходима, чтобы избежать влияния замерзания, которое происходит на поверхности зимой. Объем пруда или озера должен быть достаточно большим, чтобы поглощать энергию, необходимую для обогрева, или энергию, выделяемую при охлаждении, без значительного влияния на температуру воды в пруду / озере.

Открытые системы

Системы с открытым контуром используют грунтовые воды напрямую. Вода обычно откачивается из одной скважины и возвращается во вторую, соседнюю скважину. Расстояние между колодцами должно быть достаточно большим, чтобы возвратная вода не влияла на забираемую воду. Воду также можно откачивать из пруда или озера в одном месте и возвращать на некоторое расстояние. Системы с открытым контуром могут быть экономичными, если источник воды расположен поблизости.

Выводы

Современное геотермальное оборудование более надежно и дешевле, чем несколько лет назад.Это, а также недавняя нестабильность цен на ископаемое топливо, сделали использование геотермального тепла все более популярным в жилых и коммерческих целях. Из-за более высоких температур, которые обычно требуются для отопления теплиц, для геотермальных систем может потребоваться тепловой насос. Там, где требуется низкотемпературное тепло, например, поддержание температуры воздуха чуть выше точки замерзания, возможно прямое использование тепла.

По мере увеличения стоимости ископаемого топлива окупаемость альтернативных систем отопления сокращается.Для большинства геотермальных систем окупаемость, как правило, составляет менее десяти лет при цене на энергию в 25 долларов за мегатональную тепловую единицу (эквивалент мазута № 2 по цене 2,50 доллара за галлон). В некоторых случаях он может быть значительно лучше, в диапазоне от 3 до 7 лет, в зависимости от геотермального источника, стоимости системы и количества вытесняемого ископаемого топлива.

Авторы

Автор

Рецензенты

.

Отопление теплицы | HowStuffWorks

Теплицы создают защищенную среду для растений, используя солнечное излучение для улавливания тепла. Эта система обогрева и циркуляции воздуха помогает создать в теплице искусственную среду, которая может поддерживать растения, когда наружная температура слишком низкая или переменная. Тепло проникает в теплицу через ее покрытие из стекла или пластика и начинает нагревать предметы, почву и растения внутри. Нагретый воздух возле почвы начинает подниматься и немедленно заменяется более холодным окружающим воздухом, который начинает нагреваться.Этот цикл повышает температуру внутри теплицы быстрее, чем воздух снаружи, создавая более теплый микроклимат.

В умеренном климате солнце может обогревать теплицу, но там, где температура резко падает, может потребоваться искусственное обогревание для поддержания температуры выше нуля. В тех случаях, когда одни теплицы имеют доступ к центральному отоплению из главного здания, другие должны полагаться на природный или баллонный газ, нагревательные змеевики или вентиляторы. Обычно они работают вместе с термостатом.Поскольку тепло - одна из самых больших затрат на содержание теплицы, всегда исследуются другие источники энергии, такие как использование солнечных батарей или животных в качестве источников тепла.

Объявление

В воздухе внутри теплицы действуют и другие процессы. Солнечная энергия может легко проходить через тепличное стекло, но излучение, испускаемое растениями и почвой, которые поглотили тепло, не так легко выходит наружу, помогая удерживать тепло внутри.

Это позволяет сохранять теплицу в тепле, но также может вызвать проблемы с перегревом. Чтобы растения не становились слишком горячими, необходим какой-то метод регулирования температуры. Вентиляционные отверстия, которые позволяют более легкому и горячему воздуху выходить из теплицы около крыши, а более холодному воздуху поступать ближе к уровню земли, действуют как кондиционеры. Правильная вентиляция поддерживает циркуляцию воздуха в теплице. Это помогает поддерживать стабильную температуру, а также обеспечивает циклический цикл углекислого газа (CO2), который необходим растениям для фотосинтеза [источник: Martell].Обычно в теплицах есть по крайней мере два вентиляционных отверстия: одно на крыше или рядом с ней, а другое - в нижней половине конструкции. Механические вентиляторы также могут помочь поддерживать хороший воздушный поток и регулирование тепла, автоматически открывая и закрывая вентиляционные отверстия при изменении температуры в теплице.

И, конечно же, всем растениям в теплице нужна вода. Независимо от того, используете ли вы садовый шланг, лейку или сложную автоматизированную систему с датчиками воды, вода необходима в теплице.Поскольку полив является наиболее трудоемкой работой в теплице, использование некоторых типов автоматизированных систем, таких как капиллярное матирование или капельное орошение, может сделать процесс более последовательным и надежным. Даже если подача воды непосредственно в теплицу по подземной трубе невозможна, размещение теплицы рядом с водой является практической необходимостью.

В следующем разделе мы рассмотрим различные типы теплиц и их связь с содержащимися в них растениями.

.

Отопление и охлаждение теплицы

Малоизвестный факт: большинство теплиц, работающих круглый год, потребляют много энергии. Для выращивания различных культур в межсезонье в большинстве климатических условий обычная теплица требует большого количества тепла - обычно пропана или природного газа. Это делает теплицы дорогостоящими для круглогодичной эксплуатации для многих производителей, и не настолько зелеными. Одно исследование показало, что выращивание помидоров в Нью-Йорке в течение всего года создает больше выбросов CO2, чем доставка помидоров из далеких штатов, таких как Флорида.

К счастью, есть простые и доступные решения этой проблемы, позволяющие цветоводам создать круглый год пышный и обильный сад с различными культурами. Используя пассивную солнечную конструкцию, теплицы могут значительно снизить затраты на энергию за счет максимального использования бесплатной солнечной энергии.

Вместо полностью пластиковой или стеклянной конструкции пассивные солнечные теплицы уравновешивают площадь остекления (из стекла или пластика) и теплоизоляции. В Северном полушарии северная стена изолирована так же, как стандартная стена дома.Это снижает потери тепла в ночное время и потребность в отоплении на ископаемом топливе.

Чтобы компенсировать меньшую площадь остекления, пассивные солнечные теплицы используют остекление стратегически. : они ориентированы так, чтобы большая часть остекления была обращена к солнцу под прямым углом. Дополнительные принципы включают изоляцию под землей, чтобы связать структуру со стабильными температурами почвы, и включение достаточной естественной вентиляции для пассивного охлаждения. (Подробнее о принципах проектирования пассивных солнечных теплиц см. В книге «Круглогодичная солнечная теплица» или в нашем сводном блоге «Как спроектировать круглогодичную солнечную теплицу».)

Хотя конструкция пассивной солнечной теплицы имеет большое значение для снижения затрат на электроэнергию и обеспечения круглогодичного выращивания, обычно все же требуется некоторый контроль климата. (Количество и стоимость зависят от того, что вы пытаетесь выращивать, и от вашего климата.) К счастью, существует множество устойчивых вариантов обогрева и охлаждения теплицы круглый год. Большинство из них можно описать не слишком привлекательным названием «аккумулирование тепла».

Тепловые накопители основаны на простом факте: теплицы обычно собирают чрезмерное количество тепла в течение дня из-за большой площади остекления (стекла или пластика).Например, в солнечный зимний день теплица может легко достичь температуры выше 100 F, если она не вентилируется. В результате большинство производителей постоянно проветривают здание в зимние дни, смывая тепло с помощью вытяжных вентиляторов.

Проблема в том, что после захода солнца теплица практически сразу же переохлаждается. Материалы остекления - крайне плохие изоляторы; они очень легко проводят тепло, поэтому теплица сразу остывает. Таким образом, проблема с регулированием температуры теплицы заключается не столько в общем количестве тепла, сколько во времени.

Вместо того, чтобы отводить все тепло из теплицы в течение дня, умная самонагревающаяся теплица сохраняет это тепло, когда оно необходимо. Он использует естественный парниковый эффект в течение дня, используя это свободное тепло для обогрева теплицы ночью.

Как хранить тепловую энергию в солнечной теплице

Есть несколько способов хранения тепловой энергии. Использование материалов с термальной массой, таких как вода, является наиболее распространенным. Несколько больших бочек с водой в теплице создают водную стену, которая пассивно поглощает тепло днем ​​и излучает его ночью.Несмотря на свою простоту, водяные стены сопряжены с некоторыми практическими проблемами. Во-первых, они громоздкие. Чтобы добиться значительного эффекта, нужно много материала, а он занимает место в теплице. Во-вторых, тепловая масса зависит от прямого солнечного света, чтобы иметь большое влияние, что не всегда доступно в местах с облачной зимой. (Дополнительные советы по использованию воды в качестве термальной массы см. Здесь.)

Идеальный носитель для хранения тепла является недорогим, компактным и обладает большой теплоемкостью (т.е.е. его много). К счастью, в каждой теплице уже есть один из них - земля под землей. Почву можно использовать для регулирования температуры в теплице, как воду. Но в отличие от воды, ее огромное количество уже находится под теплицей, удобно в стороне.



Использование климатической батареи

Теплообменник "земля-воздух", часто называемый климатической батареей, позволяет теплице использовать этот естественный резерв тепловой массы.Он использует почву для обогрева, охлаждения и осушения теплицы - три важнейшие функции в одном. Вот как это работает: когда теплица нагревается в течение дня, вентиляторы автоматически включаются и направляют горячий воздух из теплицы по сети труб, проложенных в земле под землей. Поскольку горячий воздух циркулирует под землей, тепло медленно передается в почву. Пройдя по трубам, воздух выходит обратно в теплицу, более прохладный и сухой. Таким образом, система охлаждает теплицу, передавая тепло почве.

Когда в теплице становится слишком холодно (ночью или в холодные дни), система также обеспечивает отопление. Когда температура воздуха опускается ниже пороговой, автоматически включаются вентиляторы и циркулирует воздух под землей. На этот раз почва теплее воздуха, и тепло передается обратно воздуху. (Для дальнейшего объяснения, видео показывает, как работает климатическая батарея.)

Помимо нагревателя / охладителя, климатическая батарея также является осушителем воздуха .Днем воздух в теплице обычно горячий и влажный. По мере продвижения под землей он охлаждается, достигает точки росы и конденсируется. Затем капли воды просачиваются в почву через небольшие отверстия в трубах. По сути, система забирает воду из воздуха и сбрасывает ее в почву, где она становится доступной для корней растений. (Фазовый переход от водяного пара к жидкости также является основным фактором охлаждающей способности в течение дня, что делает его жизненно важной частью функционирования системы.)

Климатическая батарея частично работает за счет сохранения избыточного тепла теплицы в почве.Это также зависит от стабильной температуры почвы глубоко под землей. На большей части территории США почва остается примерно на 40-50F на несколько футов ниже уровня земли, несмотря на гораздо более экстремальные температуры воздуха). Хотя 50F не жарко, в самые холодные периоды года этот воздух умеренной температуры обычно намного теплее, чем снаружи, что помогает предотвратить замерзание в теплице.

Хотя климатические батареи используют стабильную температуру земли, они отличаются от геотермальных тепловых насосов, часто называемых просто «геотермальными системами».Тепловые насосы включают цикл охлаждения (циркуляцию жидкости под землей), что делает их намного более сложными и дорогими. Климатические батареи, напротив, обеспечивают циркуляцию воздуха. Единственные необходимые компоненты - это вентиляторы, термостаты и дренажная труба, проложенная под землей. Трубы климатической батареи также закапываются на сравнительно небольшой глубине - обычно от 2 до 5 футов под землей. Таким образом, эти системы намного дешевле и проще в установке по сравнению с геотермальными тепловыми насосами - причина, по которой некоторые люди называют их «геотермальными облегченными» или «геотермальными для бедняков».’


Наземно-воздушные теплообменники также получили несколько других названий из-за долгой истории разработки с участием многих участников. Джон Круикшенк придумал термин «климатическая батарея», когда установил ее в Центральном институте пермакультуры Скалистых гор (CRMPI) в Колорадо, где Джером Осентовски сейчас выращивает пермакультуры в теплицах. (Вы можете узнать больше об их теплицах и климатических батареях в The Forest Garden Greenhouse.)

Что такое система теплопередачи "земля-воздух"?

Ceres Greenhouse Solutions немного изменила систему, чтобы увеличить ее, и назвала ее конструкцию «система передачи тепла от земли к воздуху» (GAHT).(Вы можете узнать больше о системах GAHT в Круглогодичной солнечной теплице.) «Earth Tubes» - еще одно название, которое добавляется в смесь. Они существенно отличаются из-за того, что представляют собой односторонние системы воздушного потока, всасывающие воздух снаружи и выпускающие его внутрь, обычно в сочетании с домом на земле. Напротив, климатические батареи и системы GAHT возвращают воздух в теплицу как системы с обратной связью.

Концепция использования стабильных температур и тепловой массы почвы предшествует всем вышеперечисленным прозвищам.Первая установка подобного теплообменника "земля-воздух" была произведена в 1940-х годах. В настоящее время они все еще редко используются в теплицах. Однако ситуация меняется, поскольку люди открывают для себя невероятные преимущества огромного потенциала тепловой энергии теплиц и способности почвы сохранять тепло в течение длительного времени. Некоторым производителям может потребоваться включить резервный обогреватель для самых холодных периодов зимы, но в основном климатическая батарея позволяет теплице регулировать свою температуру, используя собственное естественное тепло.Результатом является естественная изобильная и самодостаточная теплица, способная расти круглый год без ископаемого топлива.

ресурса

Для получения дополнительной информации о том, как установить систему климат-контроля, можно найти следующие ресурсы:

Линдси Шиллер - проектировщик теплиц и соучредитель компании Ceres Greenhouse Solutions , которая исследует, проектирует и строит энергоэффективные теплицы, работающие круглый год. Вместе с Марком Плинке она также является соавтором книги «Круглогодичная солнечная теплица: как спроектировать и построить теплицу с нулевым потреблением энергии» .Прочтите все сообщения Lindsey's MOTHER EARTH NEWS здесь.


Все блоггеры сообщества MOTHER EARTH NEWS согласились следовать нашим Правилам ведения блогов, и они несут ответственность за точность своих сообщений. Чтобы узнать больше об авторе этого сообщения, нажмите на его авторскую ссылку вверху страницы.

.

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как и следовало ожидать из названия, парниковый эффект работает… как теплица! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: НАСА / Лаборатория реактивного движения-Калтех

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: НАСА / Лаборатория реактивного движения-Калтех

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.