ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Автополив в теплице своими руками


28 способов своими руками (схемы и фото-инструкции)

системы полива своими руками

ыбор правильной системы полива важен для обеспечения здоровья и роста ваших растений. Теплицы бывают разных размеров и стилей и обеспечивают оптимальную среду для выращивания овощей, цветов и других культур. Здесь показано несколько способов, как сделать автоматические системы полива для теплицы своими руками, для этого не надо покупать дорогое оборудование и нанимать профессионалов. В основном для теплиц применяют способа – систему капельного полива, которая отлично подходит для высоких грядок и дождевания (разбрызгивания), идеальный вариант для саженцев.
Также в статье найдете несколько примеров, как сделать простые системы капельного полива грядок, спринклерного орошения газонов и самодельные версии самополивающихся горшков для рассады. Все способы рабочие, с пошаговыми фото, так что можете использовать для своих теплиц и огородов.

 

Система полива в теплице своими руками: комбинированный способ

Эта двойная ирригационная система отлично подходит для поднятых грядок в теплице или огороде, поэтому можете использовать для полива овощей и садовых растений. Первая часть системы - это гибкий шланг, который поддерживает растения в чистоте и свежести. Вторая часть -  система капельного орошения теплицы, которая доставляет воду к корням растений – там, где им это нужно. Одним из наиболее важных аспектов выращивания овощей является правильный полив. Построить двойную систему полива для грядки просто и доступно. Ваши грядки точно определят, сколько метров шланга, количества сосков и разбрызгивателей необходимо. В большинстве случаев грядки делают меньшего размера, чем в данном случае, то есть понадобиться короче шлангов и количество капельных линий.

После того, как соберете все расходные материалы и получите представление о длине шланга и расстоянии между капельницами, можете начинать укладывать его вдоль грядки, чтобы посмотреть, как все подходит. К сожалению, автор не сделал пошаговых фото, но весь процесс описан в пошаговом руководстве, которое вы можете прочитать на сайте. Представьте, насколько легче будет поливать, как только эта система будет установлена. Это высвободит больше времени для прополки, сбора и подготовки ваших прекрасных культур на протяжении всего сезона.

Автор: Курт Якобсон
Источник фото: www.motherearthnews.com/organic-gardening/diy-watering-system-for-gardens-zbcz1704

Системы автоматического полива для теплиц

Если переживаете, что ваши растения страдают от нехватки воды, когда вы на работе, примите кардинальное решение и сделайте, наконец, автоматическую систему полива с использованием солнечных панелей. Автор этого проекта так и поступил и вот его система работает уже два года. Это не сложная установка, инструкцию и список необходимых материалов можно прочитать на сайте. В короткой версии вот что вам нужно сделать. Подсоедините отрезок шланга к насосу, и проложите к теплице. Затем присоедините электромагнитный клапан. После этого определите, куда хотите направить воду.

  1. Проложите какой-нибудь перфорированный шланг для впитывания, или просто прорежьте несколько небольших отверстий в обычном шланге. После этого прикрепите оба конца шланга к тройнику и присоедините электромагнитный клапан. Еще одно замечание: лучше всего разместить тройник где-то посередине грядки, чтобы обеспечить равномерный поток воды в каждом направлении.
  2. Теперь с электрикой. Во-первых, вам нужно где-то хранить батареи. Можно сделать небольшую коробку из нескольких старых поддонов, чтобы хранить батареи на улице. Автор построил небольшую крышу, которая обеспечивает вентиляцию и предотвращает попадание дождя на корпус. Затем проложите кабель от батарейного отсека к тому месту, где хотите хранить электронику. Можете использовать что угодно, даже не нужно закрывать, а просто установить на кусок доски! Проложите кабель от аккумулятора к солнечному контроллеру и подключите, как показано на фото.
  3. Затем установите солнечную панель где-нибудь на солнце, проложите кабель к контроллеру заряда и подсоедините к клеммам солнечной панели.
  4. Подключите несколько кабелей к клеммам «нагрузки» на солнечном зарядном устройстве и к программируемому таймеру для подключения к сети. И, наконец, от выходной стороны таймера к насосу и электромагнитному клапану.
  5. Затем все, что вам нужно сделать, это дать батарее некоторое время зарядится. Когда в батарее будет достаточно заряда, запрограммируйте таймер. Например, данная система поливает примерно 1-3 минуты каждые 3-4 часа, в зависимости от температуры.

Источник фото: www.instructables.com/id/Automatic-Solar-Powered-Greenhouse-Watering-System/

Дождевание в теплице: автоматическая система полива своими руками

Это большой проект, здесь показано, как оборудовать автоматическую систему полива теплицы методом дождевания. Перед тем, как начнете копать и покупать приспособления и оборудование, измерьте расстояния между узлами, чтобы рассчитать общее количество материалов, которые понадобятся. Для этого проекта использовался шланг PEX (это поперечно-сшитый полиэтилен, относится к группе термопластиков). Кроме этого вам понадобятся фитинги, резервуар для воды, водопроводный кран, клапаны. Расчистите участок и начинайте копать, траншеи лучше делать ниже глубины замерзания, то есть где-то 50 см.

Прежде чем начать установку шлангов, убедитесь, что резервуар для воды закреплен на такой высоте, чтобы вода естественным образом поступала в систему полива теплицы. Для бака можно сделать простую поперечную раму, но достаточно надежную. Здесь бак рассчитан на 1000 литров, это почти тонна. Затем можно устанавливать шланг PEX .
Подготовка контроллера и стола. Можете, купил дешевый садовый столик, и установить старую раковину. Затем закрепите водопроводный кран и установите контроллер Arduino.
После этого подсоедините насосы и фитинги. Теперь можно установить поливочные спринклеры. Укрепите шланги с помощью стяжек, потому что давление воды в сочетании с высокой температурой может привести к тому, что шланг оторвется в Т-образных соединениях.

Источник фото: www.instructables.com/id/Automatic-Rain-Watering-System-for-Greenhouse-and-/

Полив мини-теплицы: простая система автополива своими руками

Посмотрите пример, как своими руками можно сделать приспособление для полива мини теплицы. Такая автоматическая система полива будет хорошим помощником, если вам необходимо отлучится на несколько дней.
Здесь использовался обычный наружный 12В насос. Идеальным резервуаром было бы большое ведро, но если у вас нет такой тары, в которой можно было бы вырезать отверстие, можно использовать пластиковые горшки для цветов.  Они легко режутся и одноразовые, только проблема в том, что у них есть большие дренажные отверстия, вырезанные в нижней части. Простое решение, поместить пластиковый пакет в горшок для растений и пропустить входную трубу насоса через небольшое отверстие в пакете. Поскольку пластик эластичен, он помогает сделать водонепроницаемое уплотнение. У насоса есть резиновая втулка, которая проходит через входную трубу и создает еще одно уплотнение между внутренней и внешней частью контейнера.
В большинстве небольших ирригационных систем, используются капельницы или медленный поток для отдельных горшков. Но если у вас 50 или больше саженцев, это будет нецелесообразно. Вместо этого лучше сделать систему полива дождеванием, для этого отлично подойдет простая пластиковая бутылка. Идея состоит в том, чтобы сделать в бутылочке много маленьких отверстий, а затем использовать насос, чтобы не только закачать воду в бутылку, но и создать достаточное давление для душа.

На фото видно нарисованные маркером кружки на бутылке. Вода попадает в бутылку через отверстие в крышке.

Поскольку цель бутылки - разбрызгивать воду, не обязательно, чтобы это соединение было водонепроницаемым. Используйте цилиндр с шариковой ручкой, протянутый через отверстие в крышке и закрепленный на месте плотно намотанной изолентой.
Насос поставляется с двумя резиновыми трубами, приблизительно по 30 см, при необходимости удлините трубки. Если у насоса два выхода, один заблокируйте с помощью пластикового пакета – наденьте резинку и замотайте изолентой.
Поскольку это простая система, то все должно работать без осложнений. Правда, не очень удобно, можно сделать кое-какие усовершенствования.
Лучше использовать более крупный резервуар, чтобы собрать всю неиспользованную воду, когда она стекает на самую нижнюю полку, и направить обратно в резервуар. Это не только позволит системе работать дольше без вмешательства, но и поможет достичь экологической цели - не тратить больше воды, чем это необходимо. В качестве долгосрочной цели, можете сделать так, чтобы система работала от солнечной батареи и автономной 12-вольтовой аккумуляторной батареи. Когда питание с панели падает (ночью), контур активирует насос на пару минут.

Источник фото: www.instructables.com/id/Mini-Greenhouse-Irrigation-System/

Как сделать капельный полив в теплице своими руками: устройство и преимущества системы

Выбор правильной системы полива важен для роста и здоровья растений, особенно в теплице, где вы сами контролируете влажность. Поэтому система орошения теплицы должна быть такой, которую можно контролировать и обслуживать, чтобы растения не получали слишком много или слишком мало воды.  Выбирая свой вариант, учитывайте размер теплицы и сколько времени вы можете уделить своим усилиям по выращиванию. Есть несколько вариантов ирригационной системы со своими преимуществами, но давайте пока рассмотрим только капельный полив в теплице, как один из самых популярных видов ирригации.  
Система орошения капельный полив: при использовании ряда накладных шлангов и небольших распределительных трубок с эмиттерами или разбрызгивающими кольцами на каждом конце вода капает или распыляется в отдельные емкости. Полив рассчитан по времени и хорошо регулируется, что делает систему капельного орошения идеальной для сохранения воды.

Эти системы могут быть расширены по мере необходимости, имеют низкую стоимость и могут быть адаптированы под теплицы, контейнеры для растений, поднятые грядки, кустарники, подвесные корзины и многое другое. Как правило, этот тип системы ориентирован на контейнерные тепличные садовые культуры.
Есть еще способ с использованием пластиковых бутылок, очень удобно, затрат практически никаких, а вода поступает точно по назначению, прямо к корню растения. Единственный недостаток, все это придется делать вручную.

 

Преимущества систем капельного орошения теплицы

 

Эффективное использование воды

Точная подача воды в систему капельного орошения предотвращает перерасход. Согласно многочисленным исследованиям, в результате система используют до 50 процентов меньше воды, чем традиционные методы полива, такие как разбрызгиватели.

Низкий риск заболевания

Системы капельного орошения сохраняют листву сухой, что уменьшает влажность, которая является питательной средой для болезней и вредной мучнистой росы.

Меньше вредителей

Как и болезнь, клопы любят влажную листву. Поскольку система капельного орошения направляет всю воду в почву, вредители не могут попасть в нее, что создает среду, в которой они чувствуют себя некомфортно.

Препятствует сорнякам

Наряду со снижением заболеваемости и предотвращением появления вредителей, местный полив также препятствует росту сорняков. Так как вода находится в определенном месте вокруг растения, семена сорняков не питаются и голодают.

Здоровье растений

Когда растения получают воду равномерно, они лучше развиваются! Системы капельного орошения расширяют и увеличивают период полива, вода хорошо проникает в корневую зону, что способствует улучшению роста и здоровья растений.

Экономия времени

Системы капельного орошения избавляют от необходимости перемещать разбрызгиватели или шланги, чтобы обеспечить полив. В большинстве комплектов предусмотрены таймеры, поэтому полив происходит автоматически.

Есть и другие способы, которые возможно лучше подойдут для вашей теплицы.

Туманное орошение дождеванием: из верхних дождевателей испускается очень мелкий туман, распределяя необходимую влагу, идеальную для размножения растений и прорастания семян. Системы затуманивания обладают преимуществом защиты от болезней растений, минимизации стресса растений и увеличения темпов роста. Они также помогают создать идеальную тепличную среду, сохраняя ее прохладной, влажной, влажной и устойчивой в любое время. Верхние дождевальные разбрызгиватели, когда используют трубы, расположенные над растениями и оснащенные насадками, их можно регулировать в зависимости от диапазона распыления. Надземные спринклерные системы хорошо работают для полива небольших пересаженных растений, пока они не будут готовы для размещения в саду.

Полив в лотках: эффективная система, которая работает, затопляя стол специальной конструкции, с бортиком по периметру для удержания воды. Помещенные в контейнеры растения поглощают воду и питательные вещества через дно горшков. Преимущество заключается в том, что для полива растений требуется очень мало труда, экономия затрат на воду и удобрения, за счет процесса рециркуляции, что увеличивает эффективность использования пространства внутри теплицы. Этот эффективный, но простой способ полива использовался всеми, от любителей до коммерческих предприятий.

Ручной полив: да, это может быть трудоемким, особенно если у вас много растений. Но зато позволяет регулировать подачу воды в зависимости от растения. Замедление и выделение времени для этого дает возможность внимательно изучить растения и своевременно выявить любые проблемы. Этот вариант лучше подходит для садовода любителя в небольшой теплице.
Нужны дополнительные советы о том, какая система орошения может работать лучше для вас? Прочитайте большую обзорную статью на сайте, ссылка ниже под фотографиями.

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских существ, таких как некоторые моллюски и кораллы. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .Полностью автоматизированный поливочный робот

делает большой шаг вперед к автоматизации теплиц

Владельцы теплиц могут посчитать последнее изобретение [Дэвида Дорхаута] революционной зеленой революцией! Робот Водолея [Дэвида] автоматизирует трудоемкий процесс точного полива 90 000 квадратных футов горшечных растений. Представьте себе Roomba размером с кресло с 30-литровым резервуаром для воды, автономно перемещающийся по вашей теплице, выполняющий работу по поливу 24 × 7 с абсолютным совершенством.Робот-Водолей может сделать все это с помощью трех простых настроек; добавьте линии вверх и вниз по проходам на полу, по которым будет следовать робот, установите его циферблат в соответствии с размером ваших горшков и, возможно, добавьте несколько датчиков влажности почвы, если вы хотите, чтобы в каждый горшок подавалось идеальное количество воды. Варианты включают добавление датчиков влажности почвы только между растениями разного размера, позволяя Водолею повторять уровень дозирования, требуемый датчиком влажности первого растения для данной серии.

Изучив пару сообщений на форуме, мы узнали, что бот управляется двумя чипами пропеллера Parallax и имеет достаточно автономного кодирования, чтобы открывать и закрывать двери, находить зарядные станции, заполнять 30-литровый резервуар для воды при низком уровне и точно помнить, где он остановился между пит-стопами.Мы думаем, что от набора размера горшка можно легко избавиться с помощью RFID-меток для идентификации горшков, аналогичных по стилю проекту Science Fair Sorting Project. Регулировку размера растения и горшка, а также местоположения можно легко автоматизировать с помощью системы технического зрения, такой как Pixy, представленный несколько недель назад. Наконец, вот несколько рекомендуемых аппаратных приемов для измерения влажности почвы, которые могут быть включены в Aquarius, чтобы удаленно контролировать и обслуживать только те растения, которые требуют внимания: Садовые датчики [Andy], [Clover] Контроль влажности для теплицы своими руками, [Ken_S's ] GardenMon (проект)

[Дэвид Дорхаут] имеет 14-летний опыт работы в сельском хозяйстве и биотехнологической промышленности.Он обладает уникальным талантом, применяя свою технологию безумного ученого, чтобы спасти будущее человечества, как это видно на примере его бывшего робота-фермера Просперо. Вы можете узнать больше о функциях Aquarius на веб-сайте Dorhout R&D или посмотреть видео, размещенное ниже.


.

Список парниковых газов - WorldAtlas

Автор: Эмбер Париона, 25 апреля 2017 г., в Environment

CO2 from fossil fuel consumption is the best known source of greenhouse gas, though certainly not the only one. CO2 от потребления ископаемого топлива является наиболее известным источником парниковых газов, хотя, конечно, не единственным.

11. Водяной пар (h3O) -

Водяной пар, хотя это звучит достаточно невинно, является одним из основных факторов глобального изменения климата.Интересно, что водяной пар напрямую не выделяется в результате деятельности человека. Это реакция на уже повышающиеся температуры. По мере того, как атмосфера становится выше, скорость испарения воды также увеличивается. Этот водяной пар имеет тенденцию оставаться в нижних слоях атмосферы, где он поглощает инфракрасное излучение и толкает его к поверхности земли, в результате чего и без того высокие температуры продолжают расти.

10.Озон (O3) -

Озон имеет две формы: стратосферную и тропосферную. Озон в стратосфере возникает естественным образом. Однако тропосферный озон - это парниковый газ, который способствует изменению климата. Люди производят этот газ с помощью промышленных предприятий, химических растворителей и сжигания ископаемого топлива. До индустриализации тропосферный озон был сконцентрирован на уровне 25 частей на миллиард в атмосфере. Сегодня это примерно 34 детали.Когда O3 смешивается с оксидом углерода, это соединение приводит к образованию смога. Использование общественного транспорта, отказ от пестицидов и покупка натуральных чистящих средств - все это способы уменьшить производство озона.

9.Трифторид азота (NF3) -

Трифторид азота производится промышленными газовыми и химическими компаниями. Он признан Киотским протоколом как парниковый газ, который способствует глобальному изменению климата. Срок службы в атмосфере составляет от 550 до 740 лет. В соответствии с этим экологическим соглашением страны-участницы обязались сократить выбросы этого газа.

8.Гексафторид серы (SF6) -

Гексафторид серы является электрическим изолятором и обычно используется в виде сжиженного сжатого газа. Он не очень растворим в воде, но растворяется в органических растворителях. Его продолжительность жизни в атмосфере составляет 3200 лет, а потенциал глобального потепления в 23 900 раз сильнее, чем углекислый газ. SF6 считается одним из самых опасных известных парниковых газов. Он запрещен в качестве индикаторного газа и ограничен применениями высокого напряжения.Кроме того, Министерство энергетики США устранило утечки в нескольких лабораториях, тем самым снизив выбросы на 35 000 фунтов в год.

7.Гексафторэтан (C2F6) -

Гексафторэтан - это фторуглерод, который используется в полупроводниковой промышленности и образуется из побочных продуктов процессов производства алюминия. Продолжительность жизни в атмосфере составляет 10 000 лет, а потенциал глобального потепления - 9 200. До индустриализации этого газа в атмосфере не было. Люди могут задохнуться вокруг этого газа при воздействии высоких концентраций.

6.Тетрафторметан (CF4) -

Тетрафторметан - негорючий газ, относящийся к семейству фторуглеродов. Использование процесса Холла-Эру в производстве алюминия приводит к получению этого газа. Кроме того, он используется как хладагент. CF4 - это сильный парниковый газ, который способствует изменению климата и имеет время жизни в атмосфере 50 000 лет. В настоящее время считается, что из-за его низкого уровня концентрации в атмосфере он не оказывает значительного радиационного воздействия, которое приводит к повышению глобальной температуры.Однако его присутствие постоянно увеличивается, что приведет к глобальному потеплению. Он не разрушает озон.

5.Хлордифторметан (CHClF2) -

Хлордифторметан относится к семейству газов гидрохлорфторуглеродов и чаще всего используется в качестве хладагента и пропеллента. Этот парниковый газ вносит значительный вклад в разрушение озонового слоя и глобальное потепление. Несмотря на опасность, связанную с его использованием, CHCIF2 иногда используется вместо других газов с более высоким озоноразрушающим потенциалом. Однако Европейский Союз запретил производство этого газа, а также запретил его использование для обслуживания холодильного оборудования и оборудования для кондиционирования воздуха, и разрешен только рециркулируемый хлордифторметан.Любое сломанное оборудование необходимо заменить на другое, не содержащее этого газа. Такая же стратегия сокращения и постепенного отказа использовалась в Соединенных Штатах.

4.Дихлордифторметан (CCl2F2) -

Дихлордифторметан, чаще всего называемый фреоном-12, используется в аэрозольных баллончиках и в качестве хладагента. Считается, что его жизнь в атмосфере составляет около 102 лет, когда оно окончательно разрушается под действием солнечной радиации. К сожалению, его деградация фактически позволяет разрушить озоновый слой. Слабый или нарушенный озоновый слой позволяет солнечным ультрафиолетовым лучам проникать в атмосферу Земли.До 1994 года он был популярным выбором для автомобильных кондиционеров. После Монреальского протокола производство этого парникового газа стало незаконным из-за его разрушительного воздействия на озоновый слой. Однако его все еще разрешено использовать в качестве антипирена на воздушных транспортных средствах и на подводных лодках.

3.Закись азота (N2O) -

Закись азота образуется в результате промышленного производства, сжигания ископаемого топлива и разложения сельскохозяйственных удобрений. Кроме того, это происходит естественным образом в земле. Закись азота - это сжатый сжиженный газ, срок службы в атмосфере которого составляет 114 лет, а потенциал глобального потепления в 298 раз выше, чем у двуокиси углерода. Это означает, что он улавливает тепло в атмосфере Земли с гораздо большей скоростью, чем углекислый газ.Этот газ имеет несколько применений, в том числе как окислитель ракетного двигателя, как ускоритель скорости двигателя внутреннего сгорания, как пропеллент для аэрозольных баллончиков, а также как обезболивающее и обезболивающее в стоматологии, родах и хирургии по всему миру. Правительство США согласилось анализировать, измерять и публиковать измерения выбросов парниковых газов в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата. Около 75% выбросов в США приходится на сельскохозяйственную промышленность. Несмотря на опасность для окружающей среды, ожидается, что закись азота останется одним из крупнейших выбросов парниковых газов в будущем.

2. Метан (Ch5) -

Метан в 25 раз сильнее углекислого газа с точки зрения его потенциала глобального потепления.Он также имеет срок службы 12 лет. Этот газ появляется как естественным образом, так и в результате деятельности человека. Естественно, он происходит из водно-болотных угодий, вулканов, насекомых и животных, производящих метан, а также на дне океана. Человеческая деятельность, такая как сжигание ископаемого топлива, разведение скота, выращивание риса и захоронение на свалках, способствует увеличению присутствия этого газа. При контроле земля имеет естественные поглотители, которые помогают поглощать метан, однако избыточная человеческая продукция, как оказалось, превышает то, что Земля может естественным образом поглотить.Доиндустриальный уровень составлял примерно 700 частей на миллиард. Сегодня эта цифра увеличилась до 1870 частей на миллиард.

1. Двуокись углерода (CO2) -

Возможно, самый известный в мире парниковый газ - это углекислый газ.Он естественным образом встречается в вулканах, горячих источниках, грунтовых водах и ледниках. Поскольку эти геологические образования выделяют углекислый газ, растения полагаются на него для фотосинтеза, который приводит к производству кислорода. Сегодня деятельность человека, такая как сжигание ископаемого топлива, производство цемента, вырубка лесов, сельское хозяйство и развитие, способствует увеличению производства углекислого газа. В настоящее время в атмосфере содержится 388 500 частей на миллиард, что на 108 500 больше, чем до индустриализации. При такой высокой концентрации в атмосфере растения не могут справиться, удаляя его из воздуха.Поскольку этот газ поглощает и излучает инфракрасное излучение, он вносит значительный вклад в глобальное потепление.

.

Отопление теплицы | HowStuffWorks

Теплицы создают защищенную среду для растений, используя солнечное излучение для улавливания тепла. Эта система обогрева и циркуляции воздуха помогает создать в теплице искусственную среду, которая может поддерживать растения, когда наружная температура слишком низкая или переменная. Тепло проникает в теплицу через ее покрытие из стекла или пластика и начинает нагревать предметы, почву и растения внутри. Нагретый воздух возле почвы начинает подниматься и немедленно заменяется более холодным окружающим воздухом, который начинает нагреваться.Этот цикл повышает температуру внутри теплицы быстрее, чем воздух снаружи, создавая защищенный, более теплый микроклимат.

В умеренном климате полностью обогревает теплицу солнце, но там, где температура резко падает, может потребоваться искусственное обогревание для поддержания температуры выше нуля. Там, где одни теплицы имеют доступ к центральному отоплению из главного здания, другие вынуждены полагаться на природный или баллонный газ, змеевики или вентиляторы. Обычно они работают вместе с термостатом.Поскольку тепло - одна из самых больших затрат на содержание теплицы, всегда исследуются другие источники энергии, такие как использование солнечных батарей или животных в качестве источников тепла.

Объявление

В воздухе внутри теплицы действуют и другие процессы. Солнечная энергия может легко проходить через тепличное стекло, но излучение, испускаемое растениями и почвой, которые поглотили тепло, не выходит так легко, помогая удерживать тепло внутри.

Это позволяет сохранять теплицу в тепле, но также может вызвать проблемы с перегревом. Чтобы растения не становились слишком горячими, необходим какой-то метод регулирования температуры. Вентиляционные отверстия, которые позволяют более легкому и горячему воздуху выходить из теплицы около крыши, а более холодному воздуху поступать ближе к уровню земли, действуют как кондиционеры. Правильная вентиляция поддерживает циркуляцию воздуха в теплице. Это помогает поддерживать стабильную температуру, а также обеспечивает циклический цикл углекислого газа (CO2), который необходим растениям для фотосинтеза [источник: Martell].Обычно в теплицах есть по крайней мере два вентиляционных отверстия: одно на крыше или рядом с ней, а другое - в нижней половине конструкции. Механические вентиляторы также могут помочь поддерживать хороший воздушный поток и контроль тепла, автоматически открывая и закрывая вентиляционные отверстия при изменении температуры в теплице.

И, конечно же, всем растениям в теплице нужна вода. Независимо от того, используете ли вы садовый шланг, лейку или сложную автоматизированную систему с датчиками воды, вода необходима в теплице.Поскольку полив является наиболее трудоемкой работой в теплице, использование некоторых типов автоматизированных систем, таких как капиллярное матирование или капельное орошение, может сделать процесс более последовательным и надежным. Даже если подача воды непосредственно в теплицу по подземной трубе невозможна, размещение теплицы рядом с водой является практической необходимостью.

В следующем разделе мы рассмотрим различные типы теплиц и их связь с содержащимися в них растениями.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.