ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Биологический обогрев теплицы


Биологический обогрев теплиц

Биологический обогрев основан на разложении органических материалов, благодаря которому выделяется тепло в количестве, достаточном на весь вегетационный период растений. Кроме тепла воздух теплиц и парников обогащается углекислым газом. Аэробные микроорганизмы, разлагающие различные органические материалы при доступе воздуха, выделяют тепловую энергию.

При активной деятельности микроорганизмов температура органического материала, называемого биотопливом, может достигать 72 градусов. Поэтому процесс разложения микроорганизмами биотоплива с выделением тепла условно называют горением. Горячее биотопливо используют в защищенном грунте для поддержания температуры на требуемом уровне.

Классическим биотопливом с давних времен считается конский навоз, очень быстро разогревается течение недели до 60…70 градусов, затем поддерживает оптимальную температуру в корнеобитаемом слое весь вегетационный период. Однако чаще всего любителям-овощеводам приходится использовать любой вид навоза — коровий, овечий, свиной. По сравнению с конским навозом они более холодные и тяжелые, разлагаются медленно, температура горения ниже и держится не столь продолжительное время.

При использовании коровьего и свиного навоза к нему обязательно нужно подмешивать резаную солому и другие материалы, дающие рыхлость (сухую торфокрошку, опилки, лузгу, корьё).

В качестве биотоплива используют древесные листья. В чистом виде они дают невысокую температуру и к ним лучше подмешивать коровий, свиной навоз (не менее 25%). Заготавливают их с осени: складывают в штабель и сверху присыпают землей, чтобы не разлетались.

Как биотопливо применяют и слаборазложившийся торф, добавляя к нему коровяк.

Можно  использовать измельченную солому с добавлением 0,6% раствора мочевины. Солому хорошо перемешивают и после насыщения складывают в штабель.

В качестве биотоплива пригодны так же, домовые отходы — кухонные, бумага, тряпье, мусор, опилки. Скорость их разложения и температура зависят от соотношения составных частей. Хорошо разлагается мусор, содержащий до 30…40% бумаги и тряпья. После перепревания он приобретает однородный характер и хорошо рассыпается.

Успешно применяют также лузгу, костру и так называемое сухое биотопливо, увлажненное перед закладкой в парник горячей водой, а еще лучше навозной жижей. Увлажненный материал перемешивают и рыхло укладывают в кучу высотой до 1 метра. Через 3…4 дня это биотопливо разогревается, им можно набивать парник или теплицу.

Навоз или другое биотопливо, заготовленное с осени, нужно правильно хранить. Наиболее известен холодный способ хранения, предохраняющий биотопливо от излишнего перегрева. При этом навоз складывают в штабель высотой 2 метра и уплотняют лопатами, чтобы не разлагался преждевременно. Затем его укрывают торфом, соломой, травой, листьями, опилками.

Разогревают биотопливо за неделю до закладки в парник, перебивая, растрясая вилами в рыхлые кучи высотой до 2 метров. Чтобы навоз быстрее разогрелся, в середину кучи помещают горячие камни, негашеную известь или разжигают костер, накрывая его листом железа. Когда появятся угли, на лист железа набрасывают навоз, оставляя ход для тяги. Разогретый навоз выделяет запах аммиака, температура внутри кучи достигает 30…70 градусов в зависимости от вида биотоплива.

Биотопливо хорошо разогревается при наличии азотистых питательных веществ. Поэтому, если используют древесные опилки, их желательно полить навозной жижей или мочой животных. Хороший эффект оказывает перемешивание навоза с древесными отходами. Активная деятельность микроорганизмов возможна при достаточном содержании влаги. Поэтому при необходимости биотопливо увлажняют.

Набивать парник или весеннюю теплицу нужно, предварительно очистив от снега. На дно парника или траншеи теплицы кладут опилки, а при использовании коровьего и свиного навоза укладывают хворост слоем 10 сантиметров для улучшения тепловых условий. При ранней набивке биотопливо в парник укладывают более рыхло: с краев — холодный и соломистый навоз, в середину — горячий и сверху — опять холодный и соломистый. Полностью перепревший навоз отбрасывают.

На горячее биотопливо насыпают плодородную землю слоем 15…18 сантиметров для выращивания рассады. Если рассада выращивается в горшочках, то слой земли уменьшают до 7…8 сантиметров. При выращивании овощных растений толщина земляного слоя должна быть доведена до 20 сантиметров. После выравнивания поверхности необходимо дать возможность земле прогреться, после чего производить посев или посадку растений.

При использовании биотоплива следует иметь в виду, что максимума температура внутри штабеля достигает примерно через неделю после его разогрева, затем она постепенно понижается. Однако выделение тепла может продолжаться в течение 2…3 месяцев и более.

Биологический обогрев позволяет утилизировать отходы в качестве источника тепла и улучшать воздушно-газовую среду для растений, поскольку в процессе разложения органических материалов выделяется большое количество углекислого газа, используемого растениями при фотосинтезе. После использования биотоплива в качестве источника тепла его применяют как органическое удобрение в открытом и защищенном грунте.

Биологический обогрев имеет существенный недостаток. Он не позволяет управлять тепловым режимом, если возникает необходимость поднять температуру до требуемого уровня.

Характеристика различных видов биотоплива.

Биот-во

Макс. темп.

Перебивка, дней, через

Средн. темп.

Горение, дней

   Навоз:

Конский

60…72

7…9

33…38

70…90

Коровий

40…52

18…20

12…20

75…100

Овечий

55…60

9…10

30…35

90…120

Свиной

20…30

20…30

14…16

60…70

Опилки

30…40

20…25

15…20

40…60

Кора

40…50

10…15

20…25

100…120

Бытовой мусор

60…65

10…12

36…48

80…100

 

Биот-во

Масса 1м3, кг

Кислотность, pH

Влажность, %

   Навоз:

Конский

350…450

8…9

65…70

Коровий

400…500

6…7

75…80

Овечий

400…500

7…8

65…67

Свиной

550…700

6…7

73…77

Опилки

150…200

5…6

30…40

Кора

400…500

5…7

60…75

Бытовой мусор

700…750

7…9

35…60

 

{jcomments on}

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Выбор лучшего варианта отопления на биомассе

Все больше фермеров обращают внимание на отопление на биомассе. Вот несколько вариантов нагрева биомассы для отдельно стоящей теплицы размером 30 на 96 футов, используемой для выращивания весенних клумб.

Производство весенних постельных принадлежностей
Оранжерея в готическом стиле, расположенная недалеко от Мэдисона, штат Висконсин, имеет размеры 30 футов в ширину, 96 футов в длину и 13 футов в высоту. У него есть боковая стена высотой 3 фута. Он покрыт двойным слоем полиэтиленовой пленки на крыше и по бокам и двустенным поликарбонатным листом толщиной 8 мм на торцевых стенах.

Дом используется с 1 февраля по июнь для выращивания грядок и пересадки овощей со средней заданной температурой 70 ° F днем ​​и 60 ° F ночью. Система отопления представляет собой два воздухонагревателя, работающие на пропане, мощностью 200 000 БТЕ в час (КПД 78%). Стоимость пропана составляет 2 доллара за галлон.
Источники топлива для отопления на биомассе могут включать (по часовой стрелке) кукурузу (вверху слева), древесные гранулы, мелкие зерна и гранулы прерийской травы.
Вариант A: Установите печь на гранулах в жилом / торговом центре в качестве дополнения к отоплению.Пеллетная печь имеет номинальную мощность до 70 000 британских тепловых единиц в час и будет работать в основном ночью. Блок будет установлен рядом с торцевой стеной и будет опираться на существующие циркуляционные вентиляторы для перемещения нагретого воздуха по теплице. В агрегате нет термостата, поэтому садовод должен оценить настройку тепла на основе прогнозируемой температуры на вечер.

Стоимость установки оценивается в 4350 долларов (печь стоит 3500 долларов, дымоход - 550 долларов, рабочая сила и кирпичная кладка - 300 долларов).Печь имеет ожидаемый КПД 80 процентов.

Вариант B: Установите печь для гранулирования с термостатическим управлением и мощностью нагрева от 10 000 до 160 000 БТЕ в час. Этот тип печи оснащен вентилятором большого объема (1400 кубических футов в минуту) для распределения нагретого воздуха.
К выпускному отверстию будет прикреплен короткий отрезок воздуховода, чтобы направлять воздух горизонтально вниз по теплице. Печь будет размещена в одном конце теплицы рядом с одним из существующих нагревателей.

Установленная стоимость печи составляет 6030 долларов, что включает печь, топливный бункер на 14 бушелей, регулятор термостата, дымоход, кирпичную подушку и рабочую силу. В будущем можно будет установить бункер для бестарного хранения пеллет, чтобы снизить затраты на топливо и транспортировку. Для этого исследования будет использоваться топливо в мешках. Эта печь имеет ожидаемый КПД 80 процентов. Контроллер котла автоматически увеличивает и уменьшает мощность, что позволяет использовать ее в периоды низкой потребности в тепле.

Опция C: Установите уличный дровяной котел с пониженным уровнем выбросов, который соответствует ограничениям по выбросам на уровне 2 фазы EPA для наружного водяного обогревателя, с теплообменниками с принудительной подачей воздуха в теплице для распределения воздуха. По результатам независимого тестирования выбранный котел имеет мощность 160 000 БТЕ в час. Котел будет размещен сбоку от теплицы, а трубы PEX будут проведены в дом к двум воздухообменникам, расположенным в центре дома. Воздухообменники размещаются по одному с каждой стороны центрального прохода и обращены в противоположных направлениях для обеспечения кругового потока воздуха.Вентиляторы теплообменника и циркуляционные насосы будут подключены к термостату.

Установленная стоимость оценивается в 13 050 долларов (стоимость котла - 10 175 долларов, теплообменники горячей воды и воздуха - 1600 долларов, трубопроводы и насосы - 775 долларов, рабочая сила и бетонная подкладка - 500 долларов. Средняя эффективность этого котла составляет 75 процентов по данным EPA. Не учитываются потери тепла от котла и трубопроводов к теплице, равно как и количество дров, сожженных в течение дня, когда спрос невелик или отсутствует.

Опция D: Это то же самое, что и опция C, но включает не отвечающий требованиям дровяной котел для установки вне помещений для программы сокращения выбросов Агентства по охране окружающей среды (типовой котел для наружной установки до 2008 г.). Расчетная эффективность 40 процентов. Установленная стоимость 11 634 доллара (стоимость котла 8 760 долларов). Все остальные расходы такие же.

Потребность в отоплении
Модель теплового баланса для аудита теплиц была использована для расчета потребности в отоплении для поддержания заданной температуры (таблица 1). В типичной теплице происходит 80 процентов обогрева Таблица 1.Средняя потребность в отоплении за ночь по месяцам. В этом случае дневное отопление в среднем полностью обеспечивается солнечным излучением, за исключением февраля. Средняя дневная потребность в отоплении в феврале составляет 12 795 БТЕ в час или около 10 процентов от общей дневной потребности в отоплении. Модель использует ежемесячные погодные данные, поэтому это среднее значение потребности в отоплении.

Полезное тепло от печи или печи оценивалось путем сравнения потребности в тепле и мощности печи или печи.Будут периоды низких температурных колебаний, когда плита или печь не будет иметь достаточной мощности для поддержания заданной температуры. Термостат для текущего пропанового нагревателя должен быть установлен примерно на 5 ° F ниже уставки термостата печи, так что пропановые нагреватели будут обеспечивать дополнительный нагрев в холодные периоды.

Нагреватели теплицы рассчитаны на поддержание заданной температуры при некоторой минимальной температуре окружающего воздуха. В таблице 2 показана требуемая мощность нагрева для поддержания внутренней температуры 65 ° F.Основываясь на выходной мощности систем отопления, используемых в этом исследовании, вариант A может обеспечить 100 процентов потребности в отоплении до температуры наружного воздуха 40 ° F, в то время как варианты B, C и D должны обеспечивать 100 процентов потребности в отоплении примерно до 10 ° F.

Таблица 2. Требования к обогреву в зависимости от температуры наружного воздуха. Средняя минимальная температура в Мэдисоне, штат Висконсин, в феврале составляет 14,3 ° F, поэтому, исходя из среднемесячных значений отопления, варианты B, C и D должны быть в состоянии обеспечить 100 процентов потребностей в отоплении.На самом деле будет много ночей (и несколько дней), когда потери тепла будут выше, чем мощность системы отопления на биомассе. Подсчитано, что тепло пропана будет обеспечивать 20 процентов обогрева для вариантов B, C и D в дополнение к обогреву ночами с температурой ниже 10 ° F.

Ожидаемая замена энергии
По оценкам модели потери тепла в теплице, теплице потребуется 1592 галлона пропана по цене 2 доллара за галлон при общей стоимости 3184 доллара на весенний вегетационный период.Стоимость древесных пеллет на местном уровне составляет 4,60 доллара США за 40-фунтовый мешок на поддонах из 50 мешков и 150 долларов за шнур древесины (с учетом затрат на заготовку древесины самостоятельно). Если бы имелся бункер для бестарного хранения, стоимость древесных гранул можно было снизить до 178 долларов за тонну (20-тонная загрузка), и это позволило бы сэкономить на рабочей силе. В таблице 3 приведены затраты на электроэнергию и экономию для различных вариантов.

Лучший вариант
Горелки на гранулах имеют более высокую окупаемость, чем котлы на кордной древесине, даже несмотря на то, что стоимость энергии для варианта C ниже.Обе печи на пеллетах имеют более длительный срок окупаемости, чем может быть допустимо.

Таблица 3. Обзор вариантов нагрева биомассой

Дровяной котел с низким уровнем выбросов и более высокой эффективностью является более выгодным вложением, чем стандартный уличный котел, но оба имеют более длительную окупаемость, чем было бы приемлемо для большинства предприятий. Более длительная окупаемость обусловлена ​​более высокими капитальными затратами без соответствующего увеличения экономии энергии. Окупаемость очень чувствительна к разбросу разницы между стоимостью пропана и древесных гранул.

Прошлой зимой, когда древесные гранулы продавались по 4 доллара за 40-фунтовый мешок, а пропан продавался по 2,15 доллара за галлон, окупаемость вариантов A, B, C и D составила 4,7, 4,6, 7,1 и 9,4 года соответственно. Лучше всего инвестировать в проекты по энергосбережению.

Заключительные замечания
Небольшое предостережение - анализ этого тематического исследования теплицы не принимает во внимание затраты на удаление золы, затраты на техническое обслуживание и ремонт, а также ежедневное управление и рабочую силу.Для учета этих затрат рекомендуется анализ чистой приведенной стоимости.

Ожидается, что в долгосрочной перспективе цены на энергию будут продолжать расти, поэтому вложение в энергию биомассы должно быть хорошим вложением при условии, что биомасса легко доступна в вашем районе.

В этой статье только сравнивались разные типы систем отопления на биомассе. Сравните варианты энергоэффективности, такие как двойное остекление стен, более эффективные системы отопления и тепловые завесы, чтобы убедиться, что вы получаете максимальную окупаемость инвестиций.Инвестиции в энергоэффективность в первую очередь сокращают размер будущей системы отопления, работающей на биомассе.

Эта теплица в готическом стиле недалеко от Мэдисона, штат Висконсин, используется с 1 февраля по июнь для выращивания клумб. Прежде чем инвестировать в систему отопления, работающую на биомассе, вам также следует сравнить варианты энергоэффективности.

Скотт А. Сэнфорд - старший специалист по связям с общественностью, Университет Висконсин-Мэдисон, разработка биологических систем; (608) 262-5062; sasanford @ wisc.edu; www.bse.wisc.edu; www.uwex.edu/energy

.

парниковых газов | Определение, выбросы и парниковый эффект

Двуокись углерода (CO 2 ) является наиболее значительным парниковым газом. Естественные источники атмосферного CO 2 включают выделение газов из вулканов, горение и естественный распад органических веществ, а также дыхание аэробными (потребляющими кислород) организмами. Эти источники уравновешиваются, в среднем, набором физических, химических или биологических процессов, называемых «стоками», которые стремятся удалить CO 2 из атмосферы.Значительные естественные поглотители включают наземную растительность, которая поглощает CO 2 во время фотосинтеза.

Ряд океанических процессов также действуют как поглотители углерода. Один из таких процессов, «насос растворимости», включает спуск с поверхности морской воды, содержащей растворенный CO 2 . Другой процесс, «биологический насос», включает поглощение растворенного CO 2 морской растительностью и фитопланктоном (мелкими свободно плавающими фотосинтезирующими организмами), живущими в верхних слоях океана, или другими морскими организмами, которые используют CO 2 для строить скелеты и другие конструкции из карбоната кальция (CaCO 3 ).Когда эти организмы истекают и падают на дно океана, их углерод транспортируется вниз и в конечном итоге закапывается на глубине. Долгосрочный баланс между этими естественными источниками и стоками приводит к фоновому, или естественному, уровню CO 2 в атмосфере.

Напротив, деятельность человека увеличивает уровни CO 2 в атмосфере, главным образом, за счет сжигания ископаемого топлива (в основном нефти и угля и, во вторую очередь, природного газа для использования на транспорте, в отоплении и производстве электроэнергии) и за счет производства цемента.Другие антропогенные источники включают выжигание лесов и расчистку земель. В настоящее время антропогенные выбросы приводят к ежегодному выбросу в атмосферу около 7 гигатонн (7 миллиардов тонн) углерода. Антропогенные выбросы составляют примерно 3 процента от общих выбросов CO 2 из естественных источников, и эта усиленная углеродная нагрузка от деятельности человека намного превышает компенсирующую способность естественных поглотителей (возможно, на 2–3 гигатонны в год) .

вырубка леса Тлеющие остатки участка обезлесенной земли в тропических лесах Амазонки в Бразилии.По оценкам, на чистую глобальную вырубку лесов ежегодно приходится около двух гигатонн выбросов углерода в атмосферу. © Brasil2 / iStock.com

CO 2 соответственно накапливался в атмосфере со средней скоростью 1,4 частей на миллион (ppm) по объему в год в период с 1959 по 2006 год и примерно 2,0 ppm в год в период с 2006 по 2018 год. В целом, эта скорость накопления была линейный (то есть однородный во времени). Однако некоторые нынешние поглотители, такие как океаны, могут стать источниками в будущем.Это может привести к ситуации, когда концентрация CO 2 в атмосфере растет с экспоненциальной скоростью (то есть со скоростью увеличения, которая также увеличивается с течением времени).

Кривая Килинга Кривая Килинга, названная в честь американского климатолога Чарльза Дэвида Килинга, отслеживает изменения концентрации углекислого газа (CO 2 ) в атмосфере Земли на исследовательской станции на Мауна-Лоа на Гавайях. Хотя эти концентрации испытывают небольшие сезонные колебания, общая тенденция показывает, что CO 2 увеличивается в атмосфере. Encyclopdia Britannica, Inc.

Естественный фоновый уровень углекислого газа колеблется во временных масштабах в миллионы лет из-за медленных изменений в дегазации в результате вулканической активности. Например, примерно 100 миллионов лет назад, в меловой период, концентрации CO 2 были в несколько раз выше, чем сегодня (возможно, около 2000 частей на миллион). За последние 700000 лет концентрации CO 2 менялись в гораздо меньшем диапазоне (примерно от 180 до 300 ppm) в связи с теми же эффектами земной орбиты, связанными с наступлением и уходом ледниковых периодов эпохи плейстоцена.К началу 21 века уровни CO 2 достигли 384 ppm, что примерно на 37 процентов выше естественного фонового уровня примерно 280 ppm, существовавшего в начале промышленной революции. Уровни атмосферного CO 2 продолжали расти и к 2018 году достигли 410 частей на миллион. Согласно измерениям керна льда, такие уровни считаются самыми высокими по крайней мере за 800 000 лет и, согласно другим свидетельствам, могут быть самыми высокими по крайней мере за 5 000 000 лет.

Радиационное воздействие, вызванное двуокисью углерода, изменяется примерно логарифмически в зависимости от концентрации этого газа в атмосфере. Логарифмическое соотношение возникает в результате эффекта насыщения, при котором по мере увеличения концентрации CO 2 становится все труднее дополнительным молекулам CO 2 влиять на «инфракрасное окно» (определенная узкая полоса длин волн в инфракрасном диапазоне). область, не поглощаемая атмосферными газами).Логарифмическое соотношение предсказывает, что потенциал потепления поверхности повысится примерно на ту же величину при каждом удвоении концентрации CO 2 . При нынешних темпах использования ископаемого топлива ожидается удвоение концентраций CO 2 по сравнению с доиндустриальными уровнями к середине 21-го века (когда концентрации CO 2 , по прогнозам, достигнут 560 ppm). Удвоение концентрации CO 2 будет означать увеличение радиационного воздействия примерно на 4 Вт на квадратный метр.Учитывая типичные оценки «чувствительности климата» при отсутствии каких-либо компенсирующих факторов, это увеличение энергии приведет к потеплению на 2–5 ° C (от 3,6 до 9 ° F) по сравнению с доиндустриальными временами. Общее радиационное воздействие антропогенных выбросов CO 2 с начала индустриальной эпохи составляет примерно 1,66 Вт на квадратный метр.

.

Выбросы парниковых газов: причины и источники

За борьбой против глобального потепления и изменения климата стоит увеличение количества парниковых газов в нашей атмосфере. Парниковый газ - это любое газообразное соединение в атмосфере, способное поглощать инфракрасное излучение, тем самым улавливая и удерживая тепло в атмосфере. Увеличивая тепло в атмосфере, парниковые газы вызывают парниковый эффект, который в конечном итоге приводит к глобальному потеплению.

Солнечная радиация и «парниковый эффект»

Глобальное потепление - не новое понятие в науке.Основы этого явления были разработаны более века назад Сванте Аррениусом в 1896 году. Его статья, опубликованная в Philosophical Magazine и Journal of Science, была первой, в которой количественно определен вклад углекислого газа в то, что ученые теперь называют «теплицей». эффект ".

Парниковый эффект возникает из-за того, что солнце бомбардирует Землю огромным количеством излучения, которое поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза. .Около 30 процентов излучения, падающего на Землю, отражается обратно в космос облаками, льдом и другими отражающими поверхностями. По данным НАСА, оставшиеся 70 процентов поглощаются океанами, землей и атмосферой.

Поглощая радиацию и нагреваясь, океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос. По данным НАСА, баланс между входящей и исходящей радиацией поддерживает общую среднюю температуру Земли на уровне 59 градусов по Фаренгейту (15 градусов по Цельсию).

Этот обмен входящей и исходящей радиацией, которая нагревает Землю, называется парниковым эффектом, потому что парниковый эффект работает примерно так же. Поступающее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу.

Как парниковые газы влияют на глобальное потепление

Газы в атмосфере, которые поглощают радиацию, известны как «парниковые газы» (иногда сокращенно ПГ), потому что они в значительной степени ответственны за парниковый эффект.Парниковый эффект, в свою очередь, является одной из основных причин глобального потепления. По данным Агентства по охране окружающей среды (EPA), наиболее важными парниковыми газами являются водяной пар (h3O), диоксид углерода (CO2), метан (Ch5) и закись азота (N2O). «Хотя кислород (O2) является вторым по распространенности газом в нашей атмосфере, O2 не поглощает тепловое инфракрасное излучение», - сказал Майкл Дейли, доцент кафедры экологических наук в колледже Ласелл в Массачусетсе.

Хотя некоторые утверждают, что глобальное потепление - это естественный процесс и что парниковые газы присутствовали всегда, количество газов в атмосфере резко возросло за последнее время.До промышленной революции содержание CO2 в атмосфере колебалось от 180 частей на миллион (частей на миллион) во время ледниковых периодов и 280 частей на миллион во время межледниковых периодов тепла. Однако после промышленной революции количество CO2 увеличивалось в 100 раз быстрее, чем при завершении последнего ледникового периода, по данным Национального управления по исследованию океана и атмосферы (NOAA).

Фторированные газы, то есть газы, к которым был добавлен элемент фтор, включая гидрофторуглероды, перфторуглероды и гексафторид серы, образуются в ходе промышленных процессов и также считаются парниковыми газами.Хотя они присутствуют в очень малых концентрациях, они очень эффективно улавливают тепло, что делает их газами с высоким «потенциалом глобального потепления» (ПГП).

Хлорфторуглероды (ХФУ), которые когда-то использовались в качестве хладагентов и аэрозольных пропеллентов, пока они не были выведены из обращения в соответствии с международным соглашением, также являются парниковыми газами.

На степень влияния парникового газа на глобальное потепление влияют три фактора:

  • Его концентрация в атмосфере.
  • Как долго он остается в атмосфере.
  • Его потенциал глобального потепления.

Углекислый газ оказывает значительное влияние на глобальное потепление, отчасти из-за его большого количества в атмосфере. По данным EPA, в 2016 году выбросы парниковых газов в США составили 6 511 миллионов метрических тонн (7 177 миллионов тонн) эквивалента углекислого газа, что равняется 81 проценту всех парниковых газов антропогенного происхождения, что на 2,5 процента меньше, чем годом ранее. Кроме того, CO2 остается в атмосфере в течение тысяч лет.

Однако, по данным EPA, метан примерно в 21 раз эффективнее поглощает излучение, чем CO2, что дает ему более высокий рейтинг GWP, хотя он остается в атмосфере всего около 10 лет.

Источники парниковых газов

Некоторые парниковые газы, такие как метан, образуются в результате сельскохозяйственных работ, включая навоз домашнего скота. Другие, такие как CO2, в основном являются результатом естественных процессов, таких как дыхание, и сжигания ископаемых видов топлива, таких как уголь, нефть и газ.

Согласно исследованию, опубликованному Университетом Дьюка, второй причиной выброса CO2 является вырубка лесов. Когда деревья убивают для производства товаров или тепла, они выделяют углерод, который обычно сохраняется для фотосинтеза.Согласно Глобальной оценке лесных ресурсов 2010 года, в результате этого процесса в атмосферу ежегодно попадает около миллиарда тонн углерода.

Лесное хозяйство и другие методы землепользования могут компенсировать некоторые из этих выбросов парниковых газов, согласно EPA.

«Пересадка помогает уменьшить накопление углекислого газа в атмосфере, поскольку растущие деревья поглощают углекислый газ посредством фотосинтеза», - сказал Дейли Live Science. «Однако леса не могут улавливать весь углекислый газ, который мы выбрасываем в атмосферу в результате сжигания ископаемого топлива, и сокращение выбросов ископаемого топлива по-прежнему необходимо, чтобы избежать накопления в атмосфере.«

Во всем мире выбросы парниковых газов являются источником серьезной озабоченности. По данным НАСА, с начала промышленной революции до 2009 года уровни CO2 в атмосфере увеличились почти на 38 процентов, а уровни метана - на колоссальные 148 процентов. , и большая часть этого увеличения пришлась на последние 50 лет. Из-за глобального потепления 2016 год был самым теплым годом за всю историю наблюдений, а 2018 год станет четвертым самым теплым годом, а 20 самых жарких лет за всю историю наблюдений пришли на период после 1998 года. , по данным Всемирной метеорологической организации.

«Наблюдаемое нами потепление влияет на атмосферную циркуляцию, которая влияет на характер осадков во всем мире», - сказал Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. «Это приведет к большим экологическим изменениям и вызовам для людей во всем мире».

Будущее нашей планеты

Если нынешние тенденции сохранятся, ученые, правительственные чиновники и растущее число граждан опасаются, что наихудшие последствия глобального потепления - экстремальные погодные условия, повышение уровня моря, исчезновение растений и животных, закисление океана, серьезные изменения климата и беспрецедентные социальные потрясения - неизбежны.

В ответ на проблемы, вызванные глобальным потеплением из-за парниковых газов, правительство США в 2013 году разработало план действий по борьбе с изменением климата. А в апреле 2016 года представители 73 стран подписали Парижское соглашение, международный пакт по борьбе с изменением климата путем инвестирования в устойчивое низкоуглеродное будущее в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата (РКИК ООН). США были включены в число стран, которые согласились с соглашением в 2016 году, но начали процедуру выхода из Парижского соглашения в июне 2017 года.

По данным EPA, выбросы парниковых газов в 2016 году были на 12 процентов ниже, чем в 2005 году, отчасти из-за значительного сокращения сжигания ископаемого топлива в результате перехода на природный газ из угля. Более теплые зимние условия в те годы также уменьшили потребность многих домов и предприятий в повышении температуры.

Исследователи во всем мире продолжают работать над поиском способов снижения выбросов парниковых газов и смягчения их последствий. По словам Дины Лич, доцента биологических и экологических наук в Университете Лонгвуд в Вирджинии, одно из возможных решений, которое изучают ученые, - это высосать углекислый газ из атмосферы и закопать его под землей на неопределенное время.

«Что мы можем сделать, так это минимизировать количество углерода, которое мы помещаем туда, и, как результат, минимизировать изменение температуры», - сказал Лич. «Однако окно действий быстро закрывается».

Дополнительные ресурсы :

Эта статья была обновлена ​​3 января 2019 г. участницей Live Science Рэйчел Росс.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.