ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Чем закрыть теплицу снизу


Чем закрыть торцы поликарбоната

Популярность конструкций из уникального сотового поликарбоната не перестает расти. Каждому хозяину хочется, чтобы парник как можно дольше не терял привлекательности и оставался герметичным. Изготовители гарантируют качественную эксплуатацию поликарбонатных листов в течение 3 лет и дольше, если изделием правильно пользоваться и вовремя герметизировать открытые соединения.

Герметики для эффективного заделывания соединений

Прочный и экологически чистый поликарбонат широко применяется в строительной и сельскохозяйственной сфере для создания теплиц и навесов, отлично пропускающих солнечный свет. Листы поликарбоната легко режутся, гнутся и поддаются сверлению при монтаже.

У хорошего хозяина непременно возникнет вопрос о том, нужно ли заделывать торцы у поликарбоната. Какой герметик для поликарбоната выбрать при заделке соединений в панелях, ведь нельзя оставлять их необработанными?

Для защиты панелей на стыках применяют силиконовый герметик для поликарбоната. Удобно использовать это средство при сборке теплицы.

Необходимо правильно выбирать герметик для поликарбоната, а какой лучше подойдет для той или другой конструкции? Силикон обладает свойством проникать во все труднодоступные места, поэтому им можно замазывать внутренние швы в теплицах. Специальные пленки тоже применяются в особых случаях.

Защитная лента

Великолепные характеристики и несомненные достоинства поликарбоната послужили его популярности и широкому распространению. Однако, сооружения из этого материала круглый год находятся на открытом пространстве, подвергаясь разрушительному воздействию внешней среды. К счастью, конструкциям можно обеспечить защиту и увеличить срок службы, если выполнять заделку торцов поликарбоната.

Слои пластика в карбонате для прочности соединены друг с другом тонкими перемычками, которые обеспечиваю листу гибкость. Но в открытые торцевые полости попадает вода и ненужный мусор, способствующий заселению биологических организмов.

Специальная самоклеющаяся лента не имеет границы срока применения, выдерживает любые изменения температуры и амортизирует при движениях материала. В его полостях поддерживается относительно постоянный микроклимат, а при сборке сооружения скотч не позволяет окантовке стираться.

Лента служит для того, чтобы герметично закрыть торец поликарбоната и увеличить срок службы сооружения. Для надежной герметизации поликарбоната применяются два типа специальной ленты:

  • перфорированный – для нижних торцов,
  • герметизирующий сплошной – для верхних профилей торцов.

Эти средства производители специально разработали для защиты стыков, в которые могут попадать вода и сор. При четком выполнении инструкции по сборке сооружение прослужит десятки лет.

Лента-герметик для защиты сотового полимера

Заделку торцов сотового поликарбоната специальным скотчем выполняют для герметизации каждого стыка и шва и защиты листов от разрушительных факторов. Снаружи материал выполнен из пластика, выполняющего роль герметика для теплицы из поликарбоната. Внутренняя сторона ленты покрыта слоем очень качественного, долговечного клея.

Хорошая гибкость герметизирующего материала позволяет закрывать самые сложные конфигурации из листов. Хорошая герметизация монолитного поликарбоната защищает полости от мусора и пыли, поэтому конструкция долго сохраняет прозрачность.

Перфорированная лента для защиты от конденсата

Этот вид гидроизоляции поликарбоната обладает полезной особенностью – избавляет от конденсата листовые полости. В структуре перфоленты есть воздушный фильтр, способствующий выводу влаги из полимерных пустот и обеспечивающий проветривание.

Когда мастер решает, чем закрыть торцы поликарбоната, нужно учесть эту функцию для соприкасающихся с почвой краев листа. Перфолента целесообразно применяется для герметизации нижних торцов поликарбоната на теплице и у беседки.

Актуальность этих видов лент объясняется несколькими причинами:

  • простое и быстрое наклеивание,
  • создание идеальной герметизации,
  • возможность обработки нестандартных конструкций,
  • сохранение функций при изменении температуры,
  • устойчивость к влажной среде.

Достоинства пленки больше не вызывают вопросов о том, чем заделать стыки поликарбоната у теплицы. Некоторые виды лент подвергают обработке биоцидными препаратами, чтобы плесневые грибки не смогли обосноваться в пустых полостях листов.

Оцинкованная лента для монтажа

Этот материал создан вовсе не для герметизации и защиты стыков и не отвечает на насущный вопрос – чем заделать поликарбонат от попадания влаги. Он применяется в качестве монтажного инструмента для прикрепления карбонатных панелей к остову конструкции. Соединение листа при помощи оцинкованного стального скотча выглядит как придавливание его к тепличному каркасу и создание антикоррозийного покрытия со значительным сроком службы.

Поликарбонатный материал, закрытый оцинкованной лентой, обладает многими преимуществами, но не лишен и некоторых недостатков. Основное достоинство этого метода монтажа заключается в скорости проведения работ по сборке и демонтажу сооружения. Это объясняется отсутствием необходимости в проделывании отверстий в листах. Сохранение целостности материала позволяет использовать его должным образом еще несколько раз.

Существенный недостаток такого способа заключается в возможности быстрой разборки поликарбонатной конструкции для похищения злоумышленниками. Прочность и жесткость теплицы снижена из-за уменьшения мест установки метизов, а острые кромки от стяжных уголков создают возможность случайно пораниться.

В видеоролике мастер подробно рассказывает, чем заделать торцы поликарбоната на теплице и об эффективных способах защиты поликарбоната:

Похожие статьи
  • Раздвижные окна из поликарбоната

    Поликарбонатные листы — практичный, прочный и недорогой материал с различной степенью прозрачности и светопроницаемости, который широко применяют в строительстве и архитектуре. В…

  • Поликарбонат не горит

    В декабре 2018г. завода «Полигаль Восток» прошел все испытания на подтверждение соответствия требованиям Техрегламента "О…

  • Обрешетка для поликарбоната

    Строительство любого объекта предполагает возведение крыши. Все чаще при монтаже частных объектов применяют поликарбонат, который обладает великолепными…

  • Балкон из поликарбоната

    Когда появляется необходимость обустроить балкон, можно избрать один из нескольких вероятных сценариев. Стандартный подход включает…

  • Навесы из поликарбоната

    Все больше владельцев коттеджей и загородных домов при обустройстве территории выбирают современные качественные материалы. Например, для возведения беседок…

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Выбросы парниковых газов: причины и источники

За борьбой против глобального потепления и изменения климата стоит увеличение количества парниковых газов в нашей атмосфере. Парниковый газ - это любое газообразное соединение в атмосфере, способное поглощать инфракрасное излучение, тем самым улавливая и удерживая тепло в атмосфере. Увеличивая тепло в атмосфере, парниковые газы вызывают парниковый эффект, который в конечном итоге приводит к глобальному потеплению.

Солнечная радиация и «парниковый эффект»

Глобальное потепление - не новое понятие в науке.Основы этого явления были разработаны более века назад Сванте Аррениусом в 1896 году. Его статья, опубликованная в Philosophical Magazine и Journal of Science, была первой, в которой количественно определен вклад углекислого газа в то, что ученые теперь называют «теплицей». эффект ".

Парниковый эффект возникает из-за того, что солнце бомбардирует Землю огромным количеством излучения, которое поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза. .Около 30 процентов излучения, падающего на Землю, отражается обратно в космос облаками, льдом и другими отражающими поверхностями. По данным НАСА, оставшиеся 70 процентов поглощаются океанами, землей и атмосферой.

Поглощая радиацию и нагреваясь, океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос. По данным НАСА, баланс между входящей и исходящей радиацией поддерживает общую среднюю температуру Земли на уровне 59 градусов по Фаренгейту (15 градусов по Цельсию).

Этот обмен входящей и исходящей радиацией, которая нагревает Землю, называется парниковым эффектом, потому что парниковый эффект работает примерно так же. Поступающее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу.

Как парниковые газы влияют на глобальное потепление

Газы в атмосфере, которые поглощают радиацию, известны как «парниковые газы» (иногда сокращенно ПГ), потому что они в значительной степени ответственны за парниковый эффект.Парниковый эффект, в свою очередь, является одной из основных причин глобального потепления. По данным Агентства по охране окружающей среды (EPA), наиболее важными парниковыми газами являются водяной пар (h3O), диоксид углерода (CO2), метан (Ch5) и закись азота (N2O). «Хотя кислород (O2) является вторым по распространенности газом в нашей атмосфере, O2 не поглощает тепловое инфракрасное излучение», - сказал Майкл Дейли, доцент кафедры экологических наук в колледже Ласелл в Массачусетсе.

Хотя некоторые утверждают, что глобальное потепление - это естественный процесс и что парниковые газы присутствовали всегда, количество газов в атмосфере резко возросло за последнее время.До промышленной революции содержание CO2 в атмосфере колебалось от 180 частей на миллион (частей на миллион) во время ледниковых периодов и 280 частей на миллион во время межледниковых периодов тепла. Однако после промышленной революции количество CO2 увеличивалось в 100 раз быстрее, чем при завершении последнего ледникового периода, по данным Национального управления по исследованию океана и атмосферы (NOAA).

Фторированные газы, то есть газы, к которым был добавлен элемент фтор, включая гидрофторуглероды, перфторуглероды и гексафторид серы, образуются в ходе промышленных процессов и также считаются парниковыми газами.Хотя они присутствуют в очень малых концентрациях, они очень эффективно улавливают тепло, что делает их газами с высоким «потенциалом глобального потепления» (ПГП).

Хлорфторуглероды (ХФУ), которые когда-то использовались в качестве хладагентов и аэрозольных пропеллентов, пока они не были выведены из обращения в соответствии с международным соглашением, также являются парниковыми газами.

На степень влияния парникового газа на глобальное потепление влияют три фактора:

  • Его концентрация в атмосфере.
  • Как долго он остается в атмосфере.
  • Его потенциал глобального потепления.

Углекислый газ оказывает значительное влияние на глобальное потепление, отчасти из-за его большого количества в атмосфере. По данным EPA, в 2016 году выбросы парниковых газов в США составили 6 511 миллионов метрических тонн (7 177 миллионов тонн) эквивалента углекислого газа, что равняется 81 проценту всех парниковых газов антропогенного происхождения, что на 2,5 процента меньше, чем годом ранее. Кроме того, CO2 остается в атмосфере в течение тысяч лет.

Однако, по данным EPA, метан примерно в 21 раз эффективнее поглощает излучение, чем CO2, что дает ему более высокий рейтинг GWP, хотя он остается в атмосфере всего около 10 лет.

Источники парниковых газов

Некоторые парниковые газы, такие как метан, образуются в результате сельскохозяйственных работ, включая навоз домашнего скота. Другие, такие как CO2, в основном являются результатом естественных процессов, таких как дыхание, и сжигания ископаемых видов топлива, таких как уголь, нефть и газ.

Согласно исследованию, опубликованному Университетом Дьюка, второй причиной выброса CO2 является вырубка лесов. Когда деревья убивают для производства товаров или тепла, они выделяют углерод, который обычно сохраняется для фотосинтеза.Согласно Глобальной оценке лесных ресурсов 2010 года, в результате этого процесса в атмосферу ежегодно попадает около миллиарда тонн углерода.

Лесное хозяйство и другие методы землепользования могут компенсировать некоторые из этих выбросов парниковых газов, согласно EPA.

«Пересадка помогает уменьшить накопление углекислого газа в атмосфере, поскольку растущие деревья поглощают углекислый газ посредством фотосинтеза», - сказал Дейли Live Science. «Однако леса не могут улавливать весь углекислый газ, который мы выбрасываем в атмосферу в результате сжигания ископаемого топлива, и сокращение выбросов ископаемого топлива по-прежнему необходимо, чтобы избежать накопления в атмосфере.«

Во всем мире выбросы парниковых газов являются источником серьезной озабоченности. По данным НАСА, с начала промышленной революции до 2009 года уровни CO2 в атмосфере увеличились почти на 38 процентов, а уровни метана - на колоссальные 148 процентов. , и большая часть этого увеличения пришлась на последние 50 лет. Из-за глобального потепления 2016 год был самым теплым годом за всю историю наблюдений, а 2018 год станет четвертым самым теплым годом, а 20 самых жарких лет за всю историю наблюдений пришли на период после 1998 года. , по данным Всемирной метеорологической организации.

«Наблюдаемое нами потепление влияет на атмосферную циркуляцию, которая влияет на характер осадков во всем мире», - сказал Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. «Это приведет к большим экологическим изменениям и вызовам для людей во всем мире».

Будущее нашей планеты

Если нынешние тенденции сохранятся, ученые, правительственные чиновники и растущее число граждан опасаются, что наихудшие последствия глобального потепления - экстремальные погодные условия, повышение уровня моря, исчезновение растений и животных, закисление океана, серьезные изменения климата и беспрецедентные социальные потрясения - неизбежны.

В ответ на проблемы, вызванные глобальным потеплением из-за парниковых газов, правительство США в 2013 году разработало план действий по борьбе с изменением климата. А в апреле 2016 года представители 73 стран подписали Парижское соглашение, международный пакт по борьбе с изменением климата путем инвестирования в устойчивое низкоуглеродное будущее в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата (РКИК ООН). США были включены в число стран, которые согласились с соглашением в 2016 году, но начали процедуру выхода из Парижского соглашения в июне 2017 года.

По данным EPA, выбросы парниковых газов в 2016 году были на 12 процентов ниже, чем в 2005 году, отчасти из-за значительного сокращения сжигания ископаемого топлива в результате перехода на природный газ из угля. Более теплые зимние условия в те годы также уменьшили потребность многих домов и предприятий в повышении температуры.

Исследователи во всем мире продолжают работать над поиском способов снижения выбросов парниковых газов и смягчения их последствий. По словам Дины Лич, доцента биологических и экологических наук в Университете Лонгвуд в Вирджинии, одно из возможных решений, которое изучают ученые, - это высосать углекислый газ из атмосферы и закопать его под землей на неопределенное время.

«Что мы можем сделать, так это минимизировать количество углерода, которое мы помещаем туда, и, как результат, минимизировать изменение температуры», - сказал Лич. «Однако окно действий быстро закрывается».

Дополнительные ресурсы :

Эта статья была обновлена ​​3 января 2019 г. участницей Live Science Рэйчел Росс.

.

парниковых газов | Определение, выбросы и парниковый эффект

Двуокись углерода (CO 2 ) является наиболее значительным парниковым газом. Естественные источники атмосферного CO 2 включают выделение газов из вулканов, горение и естественный распад органических веществ, а также дыхание аэробными (потребляющими кислород) организмами. Эти источники уравновешиваются, в среднем, набором физических, химических или биологических процессов, называемых «стоками», которые стремятся удалить CO 2 из атмосферы.Значительные естественные поглотители включают наземную растительность, которая поглощает CO 2 во время фотосинтеза.

Ряд океанических процессов также действуют как поглотители углерода. Один из таких процессов, «насос растворимости», включает спуск с поверхности морской воды, содержащей растворенный CO 2 . Другой процесс, «биологический насос», включает поглощение растворенного CO 2 морской растительностью и фитопланктоном (мелкими свободно плавающими фотосинтезирующими организмами), живущими в верхних слоях океана, или другими морскими организмами, которые используют CO 2 для строить скелеты и другие конструкции из карбоната кальция (CaCO 3 ).Когда эти организмы истекают и падают на дно океана, их углерод транспортируется вниз и в конечном итоге закапывается на глубине. Долгосрочный баланс между этими естественными источниками и стоками приводит к фоновому, или естественному, уровню CO 2 в атмосфере.

Напротив, деятельность человека увеличивает уровни CO 2 в атмосфере, главным образом, за счет сжигания ископаемого топлива (в основном нефти и угля и, во вторую очередь, природного газа для использования на транспорте, в отоплении и производстве электроэнергии) и за счет производства цемента.Другие антропогенные источники включают выжигание лесов и расчистку земель. В настоящее время антропогенные выбросы приводят к ежегодному выбросу в атмосферу около 7 гигатонн (7 миллиардов тонн) углерода. Антропогенные выбросы составляют примерно 3 процента от общих выбросов CO 2 из естественных источников, и эта усиленная углеродная нагрузка в результате деятельности человека намного превышает компенсирующую способность естественных поглотителей (возможно, на 2–3 гигатонны в год) .

вырубка леса Тлеющие остатки участка обезлесенной земли в тропических лесах Амазонки в Бразилии.По оценкам, на чистую глобальную вырубку лесов ежегодно приходится около двух гигатонн выбросов углерода в атмосферу. © Brasil2 / iStock.com

CO 2 соответственно накапливался в атмосфере со средней скоростью 1,4 частей на миллион (ppm) по объему в год в период с 1959 по 2006 год и примерно 2,0 ppm в год в период с 2006 по 2018 год. В целом, эта скорость накопления была линейный (то есть однородный во времени). Однако некоторые нынешние поглотители, такие как океаны, могут стать источниками в будущем.Это может привести к ситуации, когда концентрация CO 2 в атмосфере растет с экспоненциальной скоростью (то есть со скоростью увеличения, которая также увеличивается с течением времени).

Кривая Килинга Кривая Килинга, названная в честь американского климатолога Чарльза Дэвида Килинга, отслеживает изменения концентрации углекислого газа (CO 2 ) в атмосфере Земли на исследовательской станции на Мауна-Лоа на Гавайях. Хотя эти концентрации испытывают небольшие сезонные колебания, общая тенденция показывает, что CO 2 увеличивается в атмосфере. Encyclopdia Britannica, Inc.

Естественный фоновый уровень углекислого газа колеблется во временных масштабах в миллионы лет из-за медленных изменений в дегазации в результате вулканической активности. Например, примерно 100 миллионов лет назад, в меловой период, концентрации CO 2 , по-видимому, были в несколько раз выше, чем сегодня (возможно, около 2000 частей на миллион). За последние 700000 лет концентрации CO 2 менялись в гораздо меньшем диапазоне (примерно от 180 до 300 ppm) в связи с теми же эффектами земной орбиты, связанными с наступлением и уходом ледниковых периодов эпохи плейстоцена.К началу 21 века уровни CO 2 достигли 384 частей на миллион, что примерно на 37 процентов выше естественного фонового уровня примерно 280 частей на миллион, существовавшего в начале промышленной революции. Уровни атмосферного CO 2 продолжали расти и к 2018 году достигли 410 частей на миллион. Согласно измерениям керна льда, такие уровни считаются самыми высокими по крайней мере за 800 000 лет и, согласно другим свидетельствам, могут быть самыми высокими по крайней мере за 5 000 000 лет.

Радиационное воздействие, вызванное двуокисью углерода, приблизительно логарифмически зависит от концентрации этого газа в атмосфере. Логарифмическое соотношение возникает в результате эффекта насыщения, при котором по мере увеличения концентрации CO 2 становится все труднее дополнительным молекулам CO 2 влиять на «инфракрасное окно» (определенная узкая полоса длин волн в инфракрасном диапазоне). область, не поглощаемая атмосферными газами).Логарифмическое соотношение предсказывает, что потенциал потепления поверхности будет расти примерно на ту же величину при каждом удвоении концентрации CO 2 . При нынешних темпах использования ископаемого топлива ожидается, что к середине XXI века концентрации CO 2 увеличатся вдвое по сравнению с доиндустриальными уровнями (когда концентрации CO 2 , по прогнозам, достигнут 560 ppm). Удвоение концентрации CO 2 будет означать увеличение радиационного воздействия примерно на 4 Вт на квадратный метр.Учитывая типичные оценки «чувствительности климата» при отсутствии каких-либо компенсирующих факторов, это увеличение энергии приведет к потеплению на 2–5 ° C (от 3,6 до 9 ° F) по сравнению с доиндустриальными временами. Общее радиационное воздействие антропогенных выбросов CO 2 с начала индустриальной эпохи составляет примерно 1,66 Вт на квадратный метр.

.

Как построить геотермальную подземную теплицу

High Times недавно показала 15-футовые растения Dragonfly Earth Medicine в Британской Колумбии; А теперь посмотрите, как они это сделали!

Подземная теплица - отличный способ поддерживать постоянную температуру и относительную влажность в вашем саду в течение всего года. Уроженец Боливии, оригинальное название техники walipini, означает «место тепла». Выкопав теплицу в землю, вы получите доступ к так называемой тепловой постоянной .На пяти-семи футах ниже линии замерзания, где-нибудь на поверхности планеты, температура почвы всегда будет постоянной. Независимо от того, насколько холодным или палящим климатом является почва под вами, никогда не меняется ни зимой, ни летом.

Солнце создает динамику при ударе о поверхность Земли, называемую эффектом маховика . Тепловая масса будет собирать тепло от солнца в течение всего дня и выделять его ночью. Чтобы запечатлеть желаемый эффект маховика в walipini , вам нужно будет наблюдать за солнцем в течение всего года на планируемой строительной площадке.Вам нужно будет наметить путь и угол, под которым солнце следует в зимние месяцы, чтобы расположить теплицу так, чтобы она получала максимальное количество солнца; длинные концы, направленные с востока на запад, оптимальны.

Глубокие земляные боковые и задние стены теплицы будут действовать как тепловая масса. Солнечные лучи передают тепло и сохраняют его во внутренней задней высокой стене. Добавление базальтовых камней на заднюю стену будет собирать и удерживать тепло более эффективно для более холодного климата, в то время как использование белого каменного камня для теплого климата будет отражать солнце.

Перед тем, как нанять экскаватор с обратной лопатой, чтобы выкопать яму, убедитесь, что вы знакомы со своим уровнем грунтовых вод и тем, насколько глубоко он достигает своей наивысшей точки. Выкопайте минимум пять футов над уровнем грунтовых вод и минимум семь футов ниже задней стены, чтобы достичь тепловой постоянной. Северный климат и жаркий пустынный климат можно углубить, чтобы сад мог выдерживать экстремальные температуры поверхности.

После того, как вырыта яма, подготовьте основу для грядок, которые скоро появятся, с помощью водопроводных труб.Прокачивая нагретую воду зимой или прохладную воду летом по трубопроводу, вы создаете регулируемую среду в теплице. Сделайте это, протянув черные поликарбонатные пластиковые трубы или оцинкованные трубы вверх и вниз по основанию кроватей. Этот метод может работать в холодном климате с нагревателем ракетной массы, дровяной печью с водяной рубашкой или солнечным водонагревателем для обогрева теплицы и снижения влажности.

Теперь пора построить траншеи, деревянные мостки и (наша любимая часть) построить землю.Мы настоятельно рекомендуем садоводам делать длинные и широкие траншеи. Их легко построить, легко засыпать и они представляют собой отличное решение для беспахотной обработки почвы, которое навсегда сохранит вашу почву здоровой и богатой питательными веществами. Используйте строганную древесину или круглую древесину, чтобы создать приподнятые грядки. Наши грядки имеют глубину не менее четырех футов со слоями почвенного материала. Мы предлагаем метод наслаивания вместо обработки грядки. Покровная культура микрозелени и трав пополняет запасы полезных микробов и питательных веществ, сохраняя здоровье почвы.

Несколько вещей, которые могут быть добавлены в вашу почвенную смесь, включают солому, люцерну, почву из других частей вашей земли, навоз святой коровы и коровы Мадонны, осенние листья (в том числе листья каннабиса), домашние культуры для колонизации полезных микробов, компост , компостированные обрезки травы, зола и биоуголь из дровяной печи, измельченные стебли каннабиса, камни, материалы для лесной подстилки, коричневый рис, инокулянты от Dragonfly Earth Medicine, домашние бокаши, пюре из корня лопуха и ревеня и яблочная пемза.

Если вам нужно купить почву, спланируйте слои торфа, кокоса, отливок червей, гранул люцерны, зеленого материала с вашего участка, прошлогодних листьев конопли, каменной пыли ледников, гималайских солей, компоста, зеленого песка, пемзы, нематоды, микоризы, лиственные листья после осенней уборки, EM (эффективные микроорганизмы), бокаши и DEM, богатые бактериями травяные инокулянты.

Создание глубоких грядок поможет укладывать и укрывать урожай, а также создает более четкую холодную раковину в проходах.Между грядками важно иметь дорожки для холодной мойки. Это предотвратит задержку холодного влажного воздуха вокруг ваших растений. Джек Херер хорош в ваших кроватях, а Джек Фрост - нет. Эти дорожки должны быть вырыты не менее чем на два фута глубже дна теплицы. Эту работу можно выполнять пуласки и плоской лопатой. Затем постройте дорожку для мини-палубы на высоте не менее 2 футов над нижней частью прохода. Более глубокая траншея оптимальна для более холодного климата. Установите вентиляторы, обдувающие холодную раковину, чтобы охлажденный воздух циркулировал вверх в жаркие дни.

Теперь, когда у вас есть грядки, земля и дорожки, вам нужно построить правильный вход. Восточный вход удобен для более холодного климата. Вход может быть продиктован рельефом местности для более теплого климата и равнинной местности. Приготовьтесь к тому, чтобы вход был сбоку от стены и опускался ниже дна грядки. Это позволяет холодному воздуху оседать у входа, а не внутри теплицы. Мы сформировали землю, чтобы создать лестницу, спускающуюся в зону выращивания.

Когда ваш вход готов, пора начинать внутренние стены и крышу. Линия крыши должна быть под углом 25 ° -35 ° (с более крутым уклоном, если выпадет снег), и его угол будет определять длину ваших столбов. Выкопайте ямы для столбов и используйте дерево, бамбук, кирпич или металл, в зависимости от местных ресурсов и скорости ветра. Если у вас сильный ветер, бамбук не подойдет.

Из круглых саженцев хвойных деревьев от четырех до шести дюймов получаются отличные столбики. Если вы собираетесь использовать целые саженцы, не забудьте очистить от коры весь саженец и обуглить последние три фута, которые войдут в яму, чтобы защитить основание от гниения.Чтобы обуглить, разведите мини-костер и сожгите концы в углях, чтобы получилось черное покрытие. Выкопайте ямы для столбов глубиной от двух до трех футов. Перед заливкой верхнего слоя почвы укрепите столб бетоном или тяжелым камнем, чтобы сделать прочный якорь для всей теплицы. Столбы должны находиться на расстоянии от 10 до 12 футов друг от друга по внутреннему центру для больших теплиц и на расстоянии четырех футов от внешних стен.

Когда вы строите базовую раму, сделайте ее на высоте двух-трех футов над землей для обеспечения воздушного потока и образования снежной кучи.После того, как ваши стены будут построены, следующим шагом станут стропила. На участках с большим количеством снега нужно больше стропил; в этом случае сделайте их на расстоянии трех футов друг от друга. Зоны без снега могут находиться на расстоянии четырех футов друг от друга, поэтому крыша пропускает максимум солнечного света.

Инвестиции в поликарбонат для боковых сторон и крыши обеспечат более высокую изоляционную способность и прослужат дольше, чем его аналог из поликарбоната. Для дополнительной изоляции вы можете сделать второй полупостоянный слой полиэстера, который можно использовать поздней осенью. Сверните двойной слой после того, как ночи ранней весной имеют температуру минимум 50 ° F.С этой дополнительной защитой вы можете сделать круглогодичное выращивание реальностью даже в самом северном климате!

Когда вы выкладываете пластик, убедитесь, что он чистый, туго натянут и закреплен с помощью системы блокировки теплицы, чтобы уменьшить любые отверстия. Не скрепляйте свисающий пластик по бокам; это предотвращает приток воздуха в теплую погоду. Используйте люцерну или сена вдоль этой короткой внешней стены для дополнительной изоляции зимой. Весной бросайте обветренные тюки на грядки. Мы просто скручиваем полиэтиленовую пленку для потока воздуха и держим ее открытой в течение всего летнего вегетационного периода и закрываем в более холодные месяцы.

Теплица будет выглядеть очень неприметной, потому что она стоит всего в двух-трех футах от земли. Если вы хотите покрыть его твердым поликарбонатом, убедитесь, что ваши размеры подходят для легкого раскатного крепления. Вы можете легко создать внутри систему затемнения для отсутствия света (принудительный 12-часовой цикл темноты и 12-часовой световой цикл, чтобы заставить растения цвести) или натянуть брезент дважды в день, чтобы получить несколько урожаев в год. Растения, находящиеся в вегетативном цикле, можно переместить на улицу и пересадить на грядки для цветения при естественном световом цикле.Многие регионы могут получить пять полных циклов цветения в год при правильной технологии затемнения и недорогом дополнительном освещении в более темное время года. Северный климат нуждается в дополнительном освещении для здорового роста в разгар зимы.

Геотермальная солнечная технология не только сокращает все высокие затраты, связанные с цветущими растениями, но и уменьшает ваше влияние на землю. Стоимость ходовых огней делает лекарства слишком дорогими, особенно с учетом этого постоянно растущего рынка. Выращенные на солнце травы создают лекарство более высокого качества по более низкой цене, потому что ничто не способствует росту растений лучше, чем солнце.Технологии геотермальных подземных теплиц станут будущим этой отрасли благодаря ее способности собирать природные ресурсы и обеспечивать оптимальный рост.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.