ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Какое должно быть освещение в теплице


особенности, режим, своими руками, лампы, светильники, светодиодные, система, расчет

Большинству растений требуется 12-16 часов освещенности в сутки для нормального развития, если продолжительность освещенности падает до 10 часов и меньше, то развитие затормаживается. Но и круглосуточное освещение растений может оказаться вредным. Итак, давайте тщательно разберемся, какое освещение нужно растениям и как его обеспечить в своей теплице.

Зачем растениям свет

Из курса биологии известно, что растения потребляют углеводороды, большую долю которых вырабатывают самостоятельно путем фотосинтеза. Чтобы процесс фотосинтеза запустился, необходима световая энергия, которую растение получает с помощью пигмента хлорофилла. Для фотосинтеза большую роль играют количество получаемого света, температура воздуха и земли, наличие углекислого газа и воды. Важно не только количество света, но и его качество – спектр излучения, а также сочетания периодов освещенности и затемнения (фотопериодизм).

Растения длинного дня положительно воспринимают удлинение периода освещенности, они начинают лучше расти, зацветают. В этих целях используют специальные лампы для освещения растений. Но существуют и растения короткого дня, для которых повышение освещенности может иметь негативные последствия для цветения. Промежуточное положение занимают растения, цветение которые почти не зависит от смены режимов освещения, но свет и для них определяет, как быстро развивается растение, растет стебель и т.д. Эти особенности растений необходимо учитывать и после подбора ламп нужно еще составить оптимальное расписание их работы и отключения в теплице.

Какое освещение для растений самое оптимальное

Исследования в целом показывают, что свет из красной области спектра полезен в период цветения, а синий свет необходим во время вегетативного роста. Выдвигаются предложения ограничиться этими двумя цветами спектра и освещать ими растения в соответствующие периоды. Но не все так просто. Растения генетически приспособились к солнечному свету, который имеет белый цвет, объединяя в себе все цвета спектра. Развиваясь только под монохромным светом, овощи могут утратить свои вкусовые качества и полезные свойства, хотя цветение может наступать раньше и развитие проходить быстрее. Поэтому монохромный свет, который например, дает светодиодное освещение растений, больше подойдет для цветов.

Применяя искусственное освещение растений, одновременно стоит предпринять усилия, чтобы улучшить поступление и солнечного света. Для этого непрозрачную стену теплицы (например, граничащую с другим строением) надо накрыть светоотражающим материалом или, по крайней мере, покрасить в белый цвет. Но зимой солнечного света все равно будет не хватать из-за короткого дня. Недостаток света незамедлительно отражается на росте и развитии. Поэтому искусственное освещение для растений, разводимых в теплицах воспринимается как необходимое условие для повышения урожайности.

Освещение для теплицы (видео)

Спектр освещения для растений

Для фотосинтеза растения используют волны длиной 400-700 нм, человеческий глаз, кстати, способен воспринимать волны длиной от 380 до 780 нм. Используемая растениями часть спектра носит название фотосинтетически активного излучения и измеряется в микромолях в секунду (µмоль/с). Хотя ни инфракрасное, ни ультрафиолетовое излучение в фотосинтезе не принимают участия, они все равно определенным образом влияют на процессы, связанные с ростом побегов, цветением, окраской листьев и старением.

Интенсивность искусственного освещения зависит от количества излучаемых фотонов. Для измерения количества энергии, которую поглощает растение (имеющее определенную площадь, на которую и падает свет) за единицу времени используют µмоль/м2*с. Спектр освещения для растений принципиален, так как от него зависит степень реакции на излучение. То есть для растений важны как количество света, так и его состав, спектр. Одинаковое количество желтого и зеленого света вызовут разную реакцию у растения, от желтого света реакция будет значительно интенсивнее.

Применяя это к лампам для освещения растений, можно сказать, что более эффективны будут лампы, излучающие свет в спектре к которому растение более восприимчиво.

Каким бывает освещение для растений

Искусственное освещение для растений можно подразделить на 2 вида. Один вид подразумевает организацию дополнительного освещения для растений, чтобы они получали необходимую им норму световой энергии в течение дня. Этот вид освещение должен создавать световой поток мощностью ок. 400-1000 µмоль/м 2*с.

Другой вид освещения — фотопериодический, т.е. лампы для освещения растений настраиваются на работу ночью, чтобы удлинить период получения света. Этим достигается ускорение или замедление цветения. Дозы света подаются в размере 5-10 µмоль/м2*с.

В конкретных случаях эффективным может оказаться цикличное освещение растений на короткие промежутки времени.

Лампы для освещения растений

Распространенным источником света, применяемым в теплицах, являются натриевые лампы высокого давления. Для них характерна энергоэффективность, близкий к оптимальному спектр излучения. В большинстве моделей этих ламп спектр смещен к зонам красного и синих цветов из-за повышенного давления паров натрия. Под воздействием дополнительных порций синего света процессы фотосинтеза протекают более интенсивно.

Автоматические процессы в теплице, освещение (видео)

Также для освещения растений применяются дуговые ртутные лампы, люминесцентные лампы. Обычные лампы накаливания сильно проигрывают по эффективности ранее упомянутым видам ламп. Они потребляют много энергии, что сильно повышает себестоимость выращиваемых овощей. Для многоуровневой фермы целесообразно будет попробовать светодиодное освещение растений.

Освещение в теплице (20 фото)

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует примерно так же на Земле. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Что такое парниковый эффект? | Глобальное потепление

В то время как другие планеты солнечной системы Земли либо палящие, либо очень холодные, поверхность Земли имеет относительно мягкие стабильные температуры. Земля пользуется такими температурами из-за атмосферы, которая представляет собой тонкий слой газов, который покрывает и защищает планету.

Однако 97 процентов ученых-климатологов согласны с тем, что люди за последние два столетия радикально изменили атмосферу Земли, что привело к глобальному потеплению.Однако, чтобы понять глобальное потепление, сначала необходимо познакомиться с парниковым эффектом.

Энергия входит, энергия выходит

Каждый день по всей Земле происходит тонкий баланс между излучением, которое планета получает из космоса, и излучением, которое отражается обратно в космос.

Земля постоянно бомбардируется огромным количеством радиации, в основном солнечной. Это солнечное излучение поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза.

УФ-излучение имеет более короткую длину волны и более высокий уровень энергии, чем видимый свет, в то время как ИК-излучение имеет более длинную длину волны и более низкий уровень энергии. По данным НАСА, около 30 процентов радиации, попадающей в атмосферу Земли, немедленно отражается обратно в космос облаками, льдом, снегом, песком и другими отражающими поверхностями. Остальные 70 процентов приходящей солнечной радиации поглощаются океанами, сушей и атмосферой. По мере нагрева океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос.

Именно это равновесие входящей и исходящей радиации делает Землю пригодной для жизни со средней температурой около 59 градусов по Фаренгейту (15 градусов по Цельсию), согласно НАСА. Без этого атмосферного равновесия Земля была бы такой же холодной и безжизненной, как ее Луна, или такой же пылающей, как Венера. Луна, у которой почти нет атмосферы, имеет температуру на своей темной стороне около минус 243 F (минус 153 C). Венера, с другой стороны, имеет очень плотную атмосферу, которая улавливает солнечное излучение; средняя температура на Венере составляет около 864 F (462 C).

Парниковый эффект

Обмен входящей и исходящей радиацией, которая нагревает Землю, часто называют парниковым эффектом, потому что парниковый эффект работает примерно так же.

Входящее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу. Этот эффект позволяет тропическим растениям процветать в теплице даже холодной зимой.

Похожее явление происходит в машине, припаркованной на улице в холодный солнечный день. Поступающее солнечное излучение нагревает салон автомобиля, но исходящее тепловое излучение задерживается внутри закрытых окон автомобиля.

Газы в атмосфере могут отражать или улавливать тепловую энергию, подобно тому, как это происходит в теплице для растений. (Изображение предоставлено Россом Торо, соавтором Livescience)

Парниковые газы и глобальное потепление

«Молекулы газа, которые поглощают тепловое инфракрасное излучение и присутствуют в достаточном количестве, могут влиять на климатическую систему.Молекулы такого типа называются парниковыми газами ", - сказал в интервью Live Science Майкл Дейли, доцент кафедры экологических наук в Lasell College. Двуокись углерода (CO 2 ) и другие парниковые газы действуют как одеяло, поглощая ИК-излучение и предотвращая его. от утечки в космическое пространство. Конечным результатом является постепенное нагревание атмосферы и поверхности Земли, процесс, известный как глобальное потепление.

Эти парниковые газы включают водяной пар, CO 2 , метан, закись азота (N 2 O ) и другие газы, согласно данным Агентства по охране окружающей среды (EPA).С самого начала промышленной революции в начале 1800-х годов сжигание ископаемых видов топлива, таких как уголь, нефть и бензин, значительно увеличило концентрацию парниковых газов в атмосфере, особенно CO 2 , Национальное управление по исследованию океанов и атмосферы (NOAA). «Вырубка лесов - второй по величине антропогенный источник двуокиси углерода в атмосферу, колеблющийся от 6 до 17 процентов», - сказал Дейли.

Атмосферный CO 2 Уровни CO увеличились более чем на 40 процентов с начала промышленной революции, с примерно 280 частей на миллион (ppm) в 1800-х годах до 400 ppm сегодня.По данным Института океанографии Скриппса Калифорнийского университета в Сан-Диего, в последний раз уровни CO 2 в атмосфере Земли достигали 400 частей на миллион в эпоху плиоцена, от 5 до 3 миллионов лет назад.

Ожидается, что парниковый эффект в сочетании с увеличением уровней парниковых газов и вызванным этим глобальным потеплением будет иметь серьезные последствия, согласно почти всеобщему консенсусу ученых.

Если глобальное потепление продолжится бесконтрольно, оно вызовет значительное изменение климата, повышение уровня моря, усиление закисления океана, экстремальные погодные явления и другие серьезные природные и социальные воздействия, согласно НАСА, Агентству по охране окружающей среды и другим научным и правительственным органам.

Некоторые говорят, что газы не являются причиной глобального потепления, хотя это противоречит мнению мирового научного сообщества. «Я думаю, что точное измерение воздействия человека на климат - это очень сложная задача, и существуют огромные разногласия по поводу степени воздействия. Так что нет, я бы не согласился с тем, что это основной вклад в глобальное потепление, которое мы наблюдаем», Глава Агентства по охране окружающей среды Скотт Прюитт сообщил телеканалу CNBC утреннюю новостную программу «Squawk Box» 9 марта 2017 года.[Углекислый газ нагревает планету (вот как)]

Можно ли обратить вспять парниковый эффект?

Многие ученые согласны с тем, что ущерб, нанесенный атмосфере и климату Земли, прошел за точкой невозврата или что ущерб близок к точке невозврата. «Я согласен с тем, что мы прошли точку, позволяющую избежать изменения климата», - сказал Live Science Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. По мнению Верне, с этого момента есть три варианта:

  1. Ничего не делать и жить с последствиями.
  2. Адаптироваться к изменяющемуся климату (включая такие вещи, как повышение уровня моря и связанные с ним наводнения).
  3. Смягчить влияние изменения климата за счет агрессивной политики, которая фактически снижает концентрацию CO2 в атмосфере.

Кейт Питерман, профессор химии Йоркского колледжа в Пенсильвании, и Грегори Фой, доцент химии Йоркского колледжа Пенсильвании, считают, что ущерб еще не достигнут, и что международные соглашения и действия могут спасти атмосферу планеты.

В настоящее время некоторые ученые исследуют, как реконструировать атмосферу, чтобы обратить вспять глобальное потепление. Например, в теории, опубликованной в журнале Science в июле 2017 года Ирике Ломанн и Блаж Гаспарини, исследователями из Института атмосферных и климатических наук в ETH Zurich в Швейцарии, предлагается уменьшить перистые облака, улавливающие тепло.

«Если перистые облака вокруг Земли ведут себя как одеяло, вы пытаетесь избавиться от этого одеяла», - сказал Live Science Ломанн, профессор экспериментальной физики атмосферы в ETH Zurich.[Охладить планету? Геоинженерия легче сказать, чем сделать] «Вы удаляете водяной пар, вы удаляете влажность и предотвращаете нормальное образование перистых облаков», - сказал Ломанн.

Для получения последней информации о парниковом эффекте посетите:

Дополнительные ресурсы

.

Жизненно важные признаки планеты

Предоставлено: Лаборатория реактивного движения НАСА. Парниковый эффект - это способ удержания тепла вблизи поверхности Земли «парниковыми газами». Эти улавливающие тепло газы можно представить себе как одеяло, обернутое вокруг Земли, которое делает ее более жаркой, чем без них. Парниковые газы включают двуокись углерода, метан и оксиды азота.

Парниковые газы возникают естественным образом и являются частью нашей атмосферы. Землю иногда называют планетой «Златовласка» - на ней не слишком жарко и не слишком холодно, и условия как раз подходят для того, чтобы жизнь, в том числе и мы, процветала.Частично то, что делает Землю такой податливой, - это естественный парниковый эффект, который поддерживает температуру на планете в среднем на уровне 15 ° C (59 ° F). Но в прошлом веке или около того люди вмешивались в энергетический баланс планеты, в основном за счет сжигания ископаемого топлива, которое выделяет в воздух дополнительный углекислый газ. Уровень углекислого газа в атмосфере Земли неуклонно повышается на протяжении десятилетий и удерживает дополнительное тепло у поверхности Земли, вызывая повышение температуры.

ПОДРОБНЕЕ

.

Вопросы и ответы о тепличном утеплении | Последствия парникового потепления для политики: смягчение последствий, адаптация и научная база

Стр. 666

в условиях вегетационного периода и, вероятно, лучше прокси для летних температур, чем зимние. Смета на Особенно неоднозначен период плиоцена.

6. Какие природные явления влияют на климат в долгосрочной перспективе? бегать?

В геологической шкале времени многие вещи влияют на климат:

• Изменения в солнечной энергии

• Изменения орбитальной траектории Земли

• Изменения в распределении суши и океана (тектоническая плита движения и связанные с ними изменения в географии гор, океана циркуляции и уровня моря)

• Изменения отражательной способности земной поверхности

• Изменения атмосферных концентраций следовых газов (особенно СО2 и Ч5)

• Изменения катастрофического характера (например, удары метеоров или продолжительные извержения вулканов)

7.Что означает "время жизни в атмосфере" и "тонет"?

Эти концепции можно проиллюстрировать ссылкой на то, что называется «углеродный цикл». Когда CO2 выбрасывается в атмосферу, он движется между четырьмя основными поглотителями или бассейны накопленного углерода: атмосфера, океаны, почва и биомасса земли (растения и животные). Движение CO2 между этими стоками не очень хорошее. понял. Около 45 процентов общих выбросов CO2 от деятельности человека с доиндустриальной раз отсутствует в текущем учете CO2 в атмосфере, океанах, почве и биомасса.Было предложено три возможных поглотителя для этого недостающего CO2. Во-первых, в океаны могло быть поглощено больше CO2. чем считалось. Во-вторых, запасы СО2 в наземных растениях могут быть больше. чем предполагалось. В-третьих, больше CO2 может были впитаны непосредственно в почву, чем считается. Тем не мение, нет прямых доказательств для любого из этих объяснений с учетом всего недостающего СО2. CO2 в атмосфере относительно "долгожитель" в том смысле, что он не легко распадается на составные части.Ch5, напротив, разлагается в атмосфере примерно за 10 лет. Парниковый газ с самым большим временем жизни в атмосфере (за исключением СО2), ХФУ-115 имеет средний атмосферный Срок службы около 400 лет. Общий вклад теплицы газов для глобального потепления зависит от их атмосферного времени жизни, так как а также их способность улавливать радиацию. Таблица A.1 показывает соответствующие характеристики основных парниковых газов.

8. Все ли парниковые газы имеют одинаковый эффект?

Каждый газ имеет разные радиационные свойства, атмосферный химический состав, типичное время жизни в атмосфере и атмосферный концентрация.Например, CFC-12 примерно в 15800 раз больше эффективная молекула для молекулы при улавливании тепла, чем CO2. Поскольку CFC-12 - это большой, тяжелый молекула с множеством атомов и

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.