ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Контроль со2 воздуха в теплице


Для чего используются датчики углекислого газа (CO2) в теплицах

Необходимость подавать углекислый газ в теплицу наглядно демонстрирует общая формула фотосинтеза:

6СО2 +6Н2О+энергия света=С6Н12О6 +6О2↑

Здесь видно, что глюкоза (основное органическое вещество, источник энергии для растений) образуется из углекислого газа и воды при участии энергии света. Получается, что СО2 служит одним из важнейших кирпичиков в обменных процессах.

Иногда можно услышать мнение, что СО2 в теплицу подавать не следует. Некоторые объясняют это тем, что углекислота выделяется как продукт распада и результат жизнедеятельности почвенных микроорганизмов, а другие – тем, что конструкция теплицы сама по себе не герметична, и нужные вещества поступают из атмосферного воздуха. Однако на практике оказывается, что эти утверждения могут быть справедливы только для частных домохозяйств, где не используются стерильные искусственные субстраты, а сами теплицы построены с нарушениями герметичности. В новых аграрных комплексах вполне реальна ситуация, когда содержание углекислого газа внутри теплицы в 4 раза меньше, чем в атмосфере, а это приводит к замедлению роста растений.

Подача СО2 в теплицы: когда и почему это необходимо

Растения в сухом остатке на 95% состоят из углерода, причем черпают его они из атмосферы. В каждом кубическом метре воздуха содержится 0,56 грамм диоксида углерода. Но растения способы усвоить в 4 раза больше. В стандартных условиях концентрация СО2 составляет 0,03-0,04% от общего объема воздуха. Агрохимики рекомендуют увеличивать концентрацию углекислого газа до 0,1-0,15%, то есть в 3-5 раз по сравнению с атмосферным воздухом. Особенно оправданно это в условиях усиленного рассеянного освещения, когда потребление СО2 возрастает многократно. Соответственно, это позволит увеличить концентрацию диоксида углерода до 0,2-0,6%, в результате чего существенно ускорится процесс фотосинтеза.

А это, в свою очередь, сокращает сроки созревания плодов на 7-12 дней в среднем. Также растет и урожайность – по статистике, в теплицах, где углекислый газ подается дополнительно, она на 15-40% выше (в зависимости от вида культур). Но не стоит допускать, чтобы концентрация СО2 превышала 0,6%, поскольку в этом случае рост культур может замедлиться. Соответственно, нужно знать, как увеличить содержание углекислого газа в теплице и что делать, если обнаружено повышенное СО2. Чтобы иметь возможность проконтролировать эти показатели в нужные моменты времени, устанавливают специальные датчики.

Почему важно контролировать количество СО2 в теплицах?

Подача углекислого газа в теплицу может осуществляться тремя способами:

  • Ввод отработанных газов из котельной;
  • Прямая газация путем установки плазменной горелки;
  • Установка газовой пушки или подача углекислоты напрямую из баллона.

Вот как можно получить углекислый газ в теплице. При подаче газа как отработанного продукта горения из котельных его нужно предварительно охладить. Однако вопрос чистоты поставляемой газовой смеси все равно остается открытым: побочные продукты, содержащиеся в ней, могут негативно влиять на температурный и влажностной режимы внутри теплицы. Также в смеси содержится угарный газ, а он опасен не только для человека, но и для растений.

Более безопасным считается использование баллонов с очищенным углекислым газом (чистота газовой смеси – 99,8%, вредных веществ в составе не содержится, по ГОСТ 8050-85). В этом случае можно организовать централизованную подачу углекислоты. В перечень необходимого оборудования в этом случае входят и приборы для измерения СО2 в теплице – контрольно-измерительная аппаратура, способная поддерживать необходимую концентрацию диоксида углерода и изменять ее при необходимости (величина будет отличаться для разных культур).

Современные датчики СО2

Системы подачи СО2 в теплицах позволяют обеспечить подачу газовой смеси, принимающей активное участие в фотосинтезе. Стабильное присутствие СО2 в нужной концентрации создает предпосылки для раннего стабильного цветения и увеличивает урожайность даже лучше, чем применение минеральных удобрений.

Контроль содержания СО2 в воздухе теплицы (то есть состояния и качества воздушной среды) обеспечивают специальные датчики. Они устанавливаются в разных тепличных хозяйствах, вне зависимости от сорта выращиваемых там культур.

Принцип действия приборов

Регулятор СО2 в теплице – это электронный прибор с энергонезависимой памятью, реле, которое будет срабатывать (включаться и выключаться) при заданных значениях. Устройство может интегрироваться в комплекс с промышленными увлажнителями и вентиляционной системой.

Датчик углекислого газа в теплице обеспечивает измерения концентрации в диапазоне от 0 до 2000ppm, а опционально – до 5000ppm или 10000ppm. Допустимая температура – до 50 градусов, влажность – до 95%, при этом появления конденсата допускать нельзя.

Сенсорный датчик углекислого газа в теплице работает по такому принципу: измеряется интенсивность инфракрасного излучения до и после поглощения углекислого газа, измеряется количество света, прошедшего через светофильтр и поглощенного углекислотой. Прибор высчитывает разницу между поглощенным потоком и прошедшим мимо оптического устройства.

Виды датчиков

Датчики углекислого газа СО2 в теплице выпускаются в виде стационарных (работающих от электрической сети) и автономных (с независимым источником питания) устройств, рассчитанных на настенных, напольный, настольный монтаж или непосредственно на установку в вентканал.

Устройства комплектуются корпусами из поликарбоната, отличающимися высокой ударопрочностью и химической устойчивостью.

Дисперсионные анализаторы используют одноволновое излучение, получаемое монохроматографом. Высокую стабильность измерений демонстрируют модели с недисперсионным инфракрасным методом детектирования (они обеспечивают точность вне зависимости от содержания кислорода в воздухе). Современные модели работают по методу NDIR (недисперсионной ИК-спектрометрии). Они высокочувствительны, отличаются продолжительным эксплуатационным периодом, не нуждаются в сложных настройках и выпускаются в современном дизайне. Однако следует помнить, что они чувствительны к пыли и влаге. Поэтому необходимо выбирать модели в пылевлагозащищенном корпусе IP65, а также правильно подбирать место установки.

Как выбрать датчики в теплицу?

Все измерительные приборы, устанавливаемые в теплицах, должны соответствовать особенностям климата (высокая влажность и повышенное содержание в воздухе загрязняющих веществ, в том числе гербицидов, удобрений).

Основными критериями выбора служат:

  • Высокая точность измерения, в пределах 30ppm;
  • Прочный, функциональный корпус, повышенная степень защиты его от попадания влаги и пыли;
  • Наличие реле;
  • Удобная световая и звуковая индикация для быстрого контроля и проверки работоспособности;
  • Наличие процедуры автокалибровки, компенсирующей старение инфракрасного источника;
  • Защелкивающийся монтажный фланец на корпусе для удобства установки.

Выбирайте профессиональные датчики, позволяющие контролировать СО2 в теплице. Эти измерители содержания углекислоты помогают регулировать подачу газа и соблюдать агротехнику. В каталоге компании Измеркон представлены высокоточные детекторы углекислого газа и канальные преобразователи концентрации СО2. В парниках это оборудование позволяет контролировать генератор подачи газа и повышать урожайность естественным способом.

Как мы узнаем, что большее количество CO2 вызывает потепление?

Что говорит наука ...

Выберите уровень ... Базовый Средний Продвинутый

Усиление парникового эффекта от CO2 подтверждено множеством эмпирических данных.

Предсказывая будущее

Считается, что хорошие научные теории обладают «предсказательной силой». Другими словами, вооружившись только теорией, мы должны уметь делать прогнозы относительно предмета. Если теория верна, прогнозы сбудутся.

Вот пример: когда была предложена Таблица элементов, многие элементы еще не были обнаружены. Используя теорию Периодической таблицы, русский химик Дмитрий Менделеев смог предсказать свойства германия, галлия и скандия, несмотря на то, что они не были открыты.

Эффект от добавления искусственного СО2 предсказывается теорией парниковых газов. Эта теория была впервые предложена шведским ученым Сванте Аррениусом в 1896 году на основе более ранних работ Фурье и Тиндаля. Многие ученые в прошлом веке усовершенствовали теорию. Почти все пришли к одному и тому же выводу: если мы увеличим количество парниковых газов в атмосфере, Земля нагреется.

Они не согласны в том, в какой степени. Эта проблема называется «чувствительностью климата», когда температура повысится, если удвоить уровень CO2 по сравнению с доиндустриальным уровнем.Климатические модели предсказывают, что наименьшее повышение температуры будет в среднем 1,65 ° C (2,97 ° F), но верхние оценки сильно различаются, составляя в среднем 5,2 ° C (9,36 ° F). Текущие наилучшие оценки предполагают повышение температуры примерно на 3 ° C (5,4 ° F) с вероятным максимумом 4,5 ° C (8,1 ° F).

Что происходит…

Парниковый эффект работает следующим образом: энергия исходит от солнца в виде видимого света и ультрафиолетового излучения. Затем Земля излучает часть этой энергии в виде инфракрасного излучения. Парниковые газы в атмосфере «захватывают» часть этого тепла, а затем повторно излучают его во всех направлениях, в том числе обратно на поверхность Земли.

Благодаря этому процессу CO2 и другие парниковые газы поддерживают температуру поверхности Земли на 33 ° по Цельсию (59,4 ° F) выше, чем она была бы без них. Мы добавили на 42% больше CO2, и температура поднялась. Должны быть некоторые свидетельства, связывающие СО2 с повышением температуры.

На данный момент средняя глобальная температура повысилась примерно на 0,8 градуса Цельсия (1,4 ° F):

"Согласно текущему анализу температуры, проводимому учеными Института космических исследований имени Годдарда НАСА (GISS)… средняя глобальная температура на Земле повысилась примерно на 0.8 ° по Цельсию (1,4 ° по Фаренгейту) с 1880 года. Две трети потепления произошло с 1975 года со скоростью примерно 0,15–0,20 ° C за десятилетие ».

Температура растет, как и предсказывала теория. Но какова связь с CO2 или другими парниковыми газами, такими как метан, озон или закись азота?

Связь обнаруживается в спектре парникового излучения. Используя FTIR-спектроскопию высокого разрешения, мы можем измерить точные длины волн длинноволнового (инфракрасного) излучения, достигающего земли.

Рисунок 1: Спектр парникового излучения, измеренный на поверхности. Парниковый эффект от водяного пара отфильтровывается, показывая вклад других парниковых газов es ( Evans 2006 ).

Конечно, мы видим, что СО2 способствует значительному потеплению вместе с озоном (O3) и метаном (Ch5). Это называется поверхностным радиационным воздействием, и измерения являются частью эмпирических свидетельств того, что CO2 вызывает потепление.

... Должен подняться

Как давно CO2 способствует усилению потепления? По данным НАСА, «две трети потепления произошло с 1975 года». Есть ли надежный способ определить влияние CO2 на температуру в этот период?

Есть: мы можем измерить длины волн длинноволнового излучения, покидающего Землю (восходящее излучение). Спутники зафиксировали исходящую радиацию Земли. Мы можем изучить спектр восходящего длинноволнового излучения в 1970 и 1997 годах, чтобы увидеть, есть ли там изменения.

Рисунок 2: Изменение спектра с 1970 по 1996 год из-за следовых газов. «Яркая температура» обозначает эквивалентную температуру абсолютно черного тела (Harries, 2001).

На этот раз мы видим, что в период наибольшего повышения температуры выбросы восходящего излучения снизились на , из-за радиационного захвата точно с теми же волновыми числами, что и , увеличились на для нисходящего излучения. Идентифицируются те же парниковые газы: CO2, метан, озон и др.

Эмпирические доказательства

По мере того, как температура начала повышаться, ученые все больше и больше интересовались причиной. Было предложено много теорий. Все, кроме одного, остались незамеченными из-за отсутствия доказательств. Только одна теория выдержала испытание временем, подкрепленное экспериментами.

Мы знаем, что CO2 поглощает и повторно излучает длинноволновое излучение (Тиндаль). Теория парниковых газов предсказывает, что если мы увеличим долю парниковых газов, произойдет еще большее потепление (Аррениус).

Ученые измерили влияние CO2 как на поступающую солнечную энергию, так и на исходящую длинноволновую радиацию. Менее длинноволновое излучение уходит в космос на определенных длинах волн парниковых газов. Увеличенное длинноволновое излучение измеряется на поверхности Земли на тех же длинах волн.

Эти данные представляют собой эмпирическое свидетельство прогнозируемого эффекта CO2.

Основное опровержение, написанное GPWayne


Обновление за июль 2015 г. :

Вот соответствующая лекция-видео от Denial101x - Осмысление климатологии Отказ

Последнее обновление: 1 августа 2015 г., автор: MichaelK.Смотреть архив

.

Как мы узнаем, что большее количество CO2 вызывает потепление?

Что говорит наука ...

Выберите уровень ... Базовый Средний Продвинутый

Усиление парникового эффекта от CO2 подтверждено множеством эмпирических данных.Спутниковые измерения инфракрасных спектров за последние 40 лет показывают, что в космос уходит меньше энергии на длинах волн, связанных с CO2. Измерения на поверхности показывают, что более низкое инфракрасное излучение нагревает поверхность планеты. Это обеспечивает прямую эмпирическую причинную связь между CO2 и глобальным потеплением.

О свойствах двуокиси углерода в отношении парниковых газов известно уже более века. В 1861 году Джон Тиндал опубликовал результаты лабораторных исследований, согласно которым диоксид углерода является парниковым газом, поглощающим тепловые лучи (длинноволновое излучение).С тех пор абсорбционные качества углекислого газа стали более точно измеряться десятилетиями лабораторных измерений (Herzberg 1953, Burch 1962, Burch 1970, и т. Д.).

Парниковый эффект возникает из-за того, что парниковые газы пропускают солнечный свет (коротковолновое излучение) через атмосферу. Земля поглощает солнечный свет, нагревается, а затем повторно излучает тепло (инфракрасное или длинноволновое излучение). Уходящее длинноволновое излучение поглощается парниковыми газами в атмосфере. Это нагревает атмосферу, которая, в свою очередь, повторно излучает длинноволновое излучение во всех направлениях.Некоторые из них возвращаются на поверхность земли. Таким образом, с увеличением количества углекислого газа в атмосфере мы ожидаем увидеть меньше длинноволновой радиации, уходящей в космос на длинах волн, которые поглощает углекислый газ. Мы также ожидаем увидеть больше инфракрасного излучения, возвращающегося на Землю на тех же длинах волн.

Спутниковые измерения уходящего длинноволнового излучения

В 1970 году НАСА запустило спутник IRIS, который измерял инфракрасные спектры в диапазоне от 400 см -1 до 1600 см -1 .В 1996 году Японское космическое агентство запустило спутник IMG, который записал аналогичные наблюдения. Оба набора данных сравнивались, чтобы выявить любые изменения в исходящей радиации за 26-летний период (Harries 2001). Результирующее изменение исходящей радиации составило:


Рис. 1: Изменение спектра с 1970 по 1996 год из-за следовых газов. «Яркая температура» обозначает эквивалентную температуру абсолютно черного тела (Harries, 2001).

Они обнаружили падение исходящего излучения в полосах длин волн, в которых парниковые газы, такие как углекислый газ (CO 2 ) и метан (CH 4 ), поглощают энергию.Изменение исходящего излучения соответствует теоретическим ожиданиям. Таким образом, в документе было найдено «прямых экспериментальных доказательств значительного увеличения парникового эффекта Земли» .

Этот результат был подтвержден в последующих работах с использованием более свежих спутниковых данных. Спектры 1970 и 1997 годов сравнивались с дополнительными спутниковыми данными, полученными со спутника НАСА AIRS, запущенного в 2003 году (Griggs 2004). Этот анализ был расширен до 2006 г. с использованием данных со спутника AURA, запущенного в 2004 г. (Chen 2007).Обе статьи обнаружили наблюдаемые различия в полосах CO2, соответствующие ожидаемым изменениям в результате повышения уровня углекислого газа. Таким образом, у нас есть эмпирические доказательства того, что повышенный уровень CO2 вызывает усиленный парниковый эффект.

Измерения с поверхности нисходящего длинноволнового излучения

Компиляция наземных измерений нисходящей длинноволновой радиации с 1973 по 2008 год обнаруживает растущую тенденцию к возврату более длинноволновой радиации на Землю, что объясняется повышением температуры воздуха, влажности и содержания углекислого газа в атмосфере (Wang 2009).Дополнительные региональные исследования, такие как изучение нисходящей длинноволновой радиации над центральными Альпами, показывают, что нисходящая длинноволновая радиация увеличивается из-за усиленного парникового эффекта (Philipona 2004).

Сделав еще один шаг вперед, анализ спектральных данных высокого разрешения позволяет ученым количественно отнести увеличение нисходящей радиации к каждому из нескольких парниковых газов (Evans 2006). Результаты приводят авторов к выводу, что «эти экспериментальные данные должны эффективно положить конец аргументу скептиков о том, что не существует экспериментальных доказательств связи между увеличением выбросов парниковых газов в атмосфере и глобальным потеплением."

.

Выбросы парниковых газов: причины и источники

За борьбой против глобального потепления и изменения климата стоит увеличение количества парниковых газов в нашей атмосфере. Парниковый газ - это любое газообразное соединение в атмосфере, способное поглощать инфракрасное излучение, тем самым улавливая и удерживая тепло в атмосфере. Увеличивая тепло в атмосфере, парниковые газы вызывают парниковый эффект, который в конечном итоге приводит к глобальному потеплению.

Солнечная радиация и «парниковый эффект»

Глобальное потепление - не новое понятие в науке.Основы этого явления были разработаны более века назад Сванте Аррениусом в 1896 году. Его статья, опубликованная в Philosophical Magazine и Journal of Science, была первой, в которой количественно определен вклад углекислого газа в то, что ученые теперь называют «теплицей». эффект ".

Парниковый эффект возникает из-за того, что солнце бомбардирует Землю огромным количеством излучения, которое поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза. .Около 30 процентов излучения, падающего на Землю, отражается обратно в космос облаками, льдом и другими отражающими поверхностями. По данным НАСА, оставшиеся 70 процентов поглощаются океанами, землей и атмосферой.

Поглощая радиацию и нагреваясь, океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос. По данным НАСА, баланс между входящей и исходящей радиацией поддерживает общую среднюю температуру Земли на уровне 59 градусов по Фаренгейту (15 градусов по Цельсию).

Этот обмен входящей и исходящей радиацией, которая нагревает Землю, называется парниковым эффектом, потому что парниковый эффект работает примерно так же. Поступающее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу.

Как парниковые газы влияют на глобальное потепление

Газы в атмосфере, которые поглощают радиацию, известны как «парниковые газы» (иногда сокращенно ПГ), потому что они в значительной степени ответственны за парниковый эффект.Парниковый эффект, в свою очередь, является одной из основных причин глобального потепления. По данным Агентства по охране окружающей среды (EPA), наиболее важными парниковыми газами являются водяной пар (h3O), диоксид углерода (CO2), метан (Ch5) и закись азота (N2O). «Хотя кислород (O2) является вторым по содержанию газом в нашей атмосфере, O2 не поглощает тепловое инфракрасное излучение», - сказал Майкл Дейли, доцент кафедры экологических наук в колледже Ласелл в Массачусетсе.

Хотя некоторые утверждают, что глобальное потепление - это естественный процесс и что парниковые газы присутствовали всегда, количество газов в атмосфере за последнее время резко возросло.До промышленной революции содержание CO2 в атмосфере колебалось от 180 частей на миллион (частей на миллион) во время ледниковых периодов и 280 частей на миллион в периоды межледниковья. Однако после промышленной революции количество CO2 увеличивалось в 100 раз быстрее, чем при завершении последнего ледникового периода, по данным Национального управления по исследованию океана и атмосферы (NOAA).

Фторированные газы, то есть газы, к которым был добавлен элемент фтор, включая гидрофторуглероды, перфторуглероды и гексафторид серы, образуются в ходе промышленных процессов и также считаются парниковыми газами.Хотя они присутствуют в очень малых концентрациях, они очень эффективно удерживают тепло, что делает их газами с высоким «потенциалом глобального потепления» (ПГП).

Хлорфторуглероды (ХФУ), которые когда-то использовались в качестве хладагентов и аэрозольных пропеллентов, пока они не были выведены из обращения в соответствии с международным соглашением, также являются парниковыми газами.

На степень влияния парникового газа на глобальное потепление влияют три фактора:

  • Его концентрация в атмосфере.
  • Как долго он остается в атмосфере.
  • Его потенциал глобального потепления.

Углекислый газ оказывает значительное влияние на глобальное потепление, отчасти из-за его большого количества в атмосфере. По данным EPA, в 2016 году выбросы парниковых газов в США составили 6 511 миллионов метрических тонн (7 177 миллионов тонн) эквивалента углекислого газа, что равняется 81 проценту всех парниковых газов антропогенного происхождения, что на 2,5 процента меньше, чем годом ранее. Кроме того, CO2 остается в атмосфере в течение тысяч лет.

Однако, по данным EPA, метан примерно в 21 раз эффективнее поглощает излучение, чем CO2, что дает ему более высокий рейтинг GWP, хотя он остается в атмосфере всего около 10 лет.

Источники парниковых газов

Некоторые парниковые газы, такие как метан, образуются в результате сельскохозяйственных работ, включая навоз домашнего скота. Другие, такие как CO2, в основном являются результатом естественных процессов, таких как дыхание, и сжигания ископаемых видов топлива, таких как уголь, нефть и газ.

Согласно исследованию, опубликованному Университетом Дьюка, второй причиной выброса CO2 является вырубка лесов. Когда деревья убивают для производства товаров или тепла, они выделяют углерод, который обычно сохраняется для фотосинтеза.Согласно Глобальной оценке лесных ресурсов 2010 года, в результате этого процесса в атмосферу ежегодно попадает около миллиарда тонн углерода.

Лесное хозяйство и другие методы землепользования могут компенсировать некоторые из этих выбросов парниковых газов, согласно EPA.

«Пересадка помогает уменьшить накопление углекислого газа в атмосфере, поскольку растущие деревья поглощают углекислый газ посредством фотосинтеза», - сказал Дейли Live Science. «Однако леса не могут улавливать весь углекислый газ, который мы выбрасываем в атмосферу в результате сжигания ископаемого топлива, и сокращение выбросов ископаемого топлива по-прежнему необходимо, чтобы избежать накопления в атмосфере.«

Во всем мире выбросы парниковых газов являются источником серьезной озабоченности. По данным НАСА, с начала промышленной революции до 2009 года уровни CO2 в атмосфере увеличились почти на 38 процентов, а уровни метана - на колоссальные 148 процентов. , и большая часть этого увеличения пришлась на последние 50 лет. Из-за глобального потепления 2016 год был самым теплым годом за всю историю наблюдений, а 2018 год станет четвертым самым теплым годом, а 20 самых жарких лет за всю историю наблюдений пришли на период после 1998 года. , по данным Всемирной метеорологической организации.

«Наблюдаемое нами потепление влияет на атмосферную циркуляцию, которая влияет на характер осадков во всем мире», - сказал Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. «Это приведет к большим экологическим изменениям и вызовам для людей во всем мире».

Будущее нашей планеты

Если нынешние тенденции сохранятся, ученые, правительственные чиновники и растущее число граждан опасаются, что наихудшие последствия глобального потепления - экстремальные погодные условия, повышение уровня моря, исчезновение растений и животных, закисление океана, серьезные изменения климата и беспрецедентные социальные потрясения - неизбежны.

В ответ на проблемы, вызванные глобальным потеплением из-за парниковых газов, правительство США в 2013 году разработало план действий по борьбе с изменением климата. А в апреле 2016 года представители 73 стран подписали Парижское соглашение, международный пакт по борьбе с изменением климата путем инвестирования в устойчивое низкоуглеродное будущее в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата (РКИК ООН). США были включены в число стран, которые согласились с соглашением в 2016 году, но начали процедуру выхода из Парижского соглашения в июне 2017 года.

По данным EPA, выбросы парниковых газов в 2016 году были на 12 процентов ниже, чем в 2005 году, отчасти из-за значительного сокращения сжигания ископаемого топлива в результате перехода на природный газ из угля. Более теплые зимние условия в те годы также уменьшили потребность многих домов и предприятий в повышении температуры.

Исследователи во всем мире продолжают работать над поиском способов снижения выбросов парниковых газов и смягчения их последствий. По словам Дины Лич, доцента биологических и экологических наук в Университете Лонгвуд в Вирджинии, одно из возможных решений, которое изучают ученые, - это высосать углекислый газ из атмосферы и закопать его под землей на неопределенное время.

«Что мы можем сделать, так это минимизировать количество углерода, которое мы помещаем туда, и, как результат, минимизировать изменение температуры», - сказал Лич. «Однако окно действий быстро закрывается».

Дополнительные ресурсы :

Эта статья была обновлена ​​3 января 2019 г. участницей Live Science Рэйчел Росс.

.

Изменение климата: двуокись углерода в атмосфере

Глобальное среднее значение двуокиси углерода в атмосфере в 2019 году составило 409,8 частей на миллион ( частей на миллион, для краткости, ) с диапазоном неопределенности плюс-минус 0,1 частей на миллион. Уровень углекислого газа сегодня выше, чем когда-либо за последние 800 000 лет.

Фактически, в последний раз количество CO 2 в атмосфере было таким высоким более 3 миллионов лет назад, когда температура была на 2–3 ° C (3,6–5,4 ° F) выше, чем в доиндустриальную эпоху. , а уровень моря был на 15–25 метров (50–80 футов) выше, чем сегодня.

Концентрация углекислого газа растет в основном из-за ископаемого топлива, которое люди сжигают для получения энергии. Ископаемые виды топлива, такие как уголь и нефть, содержат углерод, который растения извлекали из атмосферы в процессе фотосинтеза в течение многих миллионов лет; мы возвращаем этот углерод в атмосферу всего за несколько сотен лет. По данным Состояние климата в 2019 г. от NOAA и Американского метеорологического общества,

С 1850 по 2018 год в результате сжигания ископаемого топлива было выброшено 440 ± 20 Пг C (1 Пг C = 1015 г C) в виде CO2 (Friedlingstein et al.2019). Только за 2018 год глобальные выбросы от ископаемого топлива впервые в истории достигли 10 ± 0,5 Пг С / год (Friedlingstein et al.2019). Около половины CO2, выброшенного с 1850 года, остается в атмосфере. Остальная часть частично растворилась в Мировом океане…. Хотя наземная биосфера в настоящее время также является поглотителем CO2 из ископаемого топлива, совокупные выбросы CO2 в результате изменений в землепользовании, таких как вырубка лесов, отменяют поглощение землей в период 1850–2018 годов (Friedlingstein et al. 2019).

Уровень двуокиси углерода в атмосфере в 2019 году составил 409,8 ± 0,1 ppm, что стало новым рекордом. Это увеличение на 2,5 ± 0,1 частей на миллион по сравнению с 2018 годом, такое же, как увеличение в период с 2017 по 2018 год. В 1960-х годах глобальные темпы роста содержания двуокиси углерода в атмосфере составляли примерно 0,6 ± 0,1 частей на миллион в год. Однако в период с 2009 по 18 год темпы роста составляли 2,3 промилле в год. Ежегодные темпы увеличения содержания углекислого газа в атмосфере за последние 60 лет примерно в 100 раз быстрее, чем предыдущие естественные приросты, такие как те, которые произошли в конце последнего ледникового периода 11 000-17 000 лет назад.

Сожмите или растяните график в любом направлении, удерживая клавишу Shift при щелчке и перетаскивании. Ярко-красная линия (исходные данные) показывает среднемесячное содержание углекислого газа в обсерватории NOAA Мауна-Лоа на Гавайях в частях на миллион (ppm): количество молекул углекислого газа на миллион молекул сухого воздуха. В течение года значения выше зимой в Северном полушарии и ниже летом. Темно-красная линия показывает годовой тренд, рассчитанный как 12-месячное скользящее среднее.

Почему диоксид углерода имеет значение

Двуокись углерода - это парниковый газ: газ, который поглощает и излучает тепло. Согреваемые солнечным светом, поверхность земли и океана постоянно излучает тепловую инфракрасную энергию (тепло). В отличие от кислорода или азота (которые составляют большую часть нашей атмосферы), парниковые газы поглощают это тепло и постепенно выделяют его, как кирпичи в камине после того, как огонь погас. Без этого естественного парникового эффекта средняя годовая температура на Земле была бы ниже нуля, а не около 60 ° F.Но увеличение количества парниковых газов нарушило баланс энергетического баланса Земли, задерживая дополнительное тепло и повышая среднюю температуру Земли.

Двуокись углерода - самый важный из долгоживущих парниковых газов Земли. Он поглощает меньше тепла на молекулу, чем парниковый газ метан или закись азота, но его больше, и он остается в атмосфере намного дольше. И хотя углекислый газ менее распространен и менее эффективен, чем водяной пар, в расчете на молекулу на молекулу, он поглощает тепловую энергию с длиной волны, которой не обладает водяной пар, что означает, что он уникальным образом усиливает парниковый эффект.Увеличение содержания углекислого газа в атмосфере является причиной примерно двух третей общего энергетического дисбаланса, вызывающего повышение температуры Земли.

Другая причина, по которой углекислый газ играет важную роль в системе Земля, заключается в том, что он растворяется в океане, как газировка в банке с газировкой. Он вступает в реакцию с молекулами воды, образуя углекислоту и понижая pH океана. С начала промышленной революции pH поверхностных вод океана упал с 8,21 до 8,10. Это падение pH называется закисление океана .

Падение 0,1 может показаться не таким уж большим, но шкала pH логарифмическая; снижение pH на 1 единицу означает десятикратное увеличение кислотности. Изменение на 0,1 означает увеличение кислотности примерно на 30%. Повышенная кислотность препятствует способности морских обитателей извлекать из воды кальций для создания своих раковин и скелетов.

Прошлое и будущее Углекислый газ

Естественное увеличение концентрации углекислого газа периодически приводило к повышению температуры Земли во время циклов ледникового периода на протяжении последних миллионов лет или более.Эпизоды тепла (межледниковья) начались с небольшого увеличения солнечного света из-за крошечного колебания оси вращения Земли или ее орбиты вокруг Солнца.

Это немного дополнительного солнечного света вызвало небольшое потепление. По мере того как океаны нагреваются, они выделяют углекислый газ - как банка газировки, развалившаяся в жаркий летний день. Избыток углекислого газа в атмосфере усилил первоначальное потепление.

Основываясь на пузырьках воздуха, захваченных в ледяных кернах толщиной в милю (и других палеоклиматических свидетельствах), мы знаем, что во время циклов ледникового периода за последний миллион лет или около того, углекислый газ никогда не превышал 300 ppm.До начала промышленной революции в середине 1700-х годов среднее количество углекислого газа в мире составляло около 280 частей на миллион.

К моменту начала непрерывных наблюдений в вулканической обсерватории Мауна-Лоа в 1958 году уровень двуокиси углерода в атмосфере уже составлял 315 ppm. 9 мая 2013 года среднесуточное значение двуокиси углерода, измеренное на Мауна-Лоа, впервые за всю историю превысило 400 частей на миллион. Менее чем через два года, в 2015 году, глобальное количество впервые превысило 400 частей на миллион. Если глобальный спрос на энергию продолжит расти и будет удовлетворяться в основном за счет ископаемых видов топлива, к концу этого столетия уровень углекислого газа в атмосфере, по прогнозам, превысит 900 ppm.

Подробнее о диоксиде углерода

Наблюдения за двуокисью углерода NOAA

Информационный бюллетень по углеродному циклу

Выбросы двуокиси углерода по странам в динамике

Сравнение парниковых газов по их потенциалу глобального потепления

Ссылки

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Уивер и М. Венер, 2013 г .: Долгосрочное изменение климата: прогнозы, обязательства и необратимость.В: Изменение климата 2013: основы физических наук. Вклад Рабочей группы I в Пятый доклад об оценке Межправительственной группы экспертов по изменению климата [Stocker, T.F., D. Qin, G.-K. Платтнер, М. Тиньор, С.К. Аллен, Дж. Бошунг, А. Науэльс, Ю. Ся, В. Бекс и П.М. Мидгли (ред.)]. Издательство Кембриджского университета, Кембридж, Великобритания и Нью-Йорк, штат Нью-Йорк, США.

X. Lan, B. D. Hall, G. Dutton, J. Mühle и J. W. Elkins. (2020). Состав атмосферы [в Состояние климата в 2018 г., Глава 2: Глобальный климат].Специальное онлайн-приложение к бюллетеню Американского метеорологического общества, том 101, № 8, август 2020 г.

Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Барнола, У. Зигенталер, Д. Рейно, Ж. Жузель, Х. Фишер, К. Кавамура и Т.Ф. Stocker. (2008). Рекордная концентрация углекислого газа с высоким разрешением 650 000-800 000 лет назад. Природа , Том. 453, с. 379-382. DOI: 10,1038 / природа06949.

Океанографическое учреждение Вудс-Хоул. (2015).Введение в закисление океана. По состоянию на 4 октября 2017 г.

Линдси Р. (2009). Климат и энергетический бюджет Земли. По состоянию на 4 октября 2017 г.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.