ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Нормы полива овощей при капельном орошении в теплице


Расход воды при капельном поливе теплицы

Системы для капельного полива парников и открытых грядок появились в нашей стране сравнительно недавно – примерно в конце 90-х годов. Именно тогда на отечественных рынках достаточно дорогие и неудобные накладные капельницы, работающие на толстостенных трубках, сменили легкие системы с интегрированными эмиттерами. Современные овощеводы не понаслышке знают преимущества такого способа орошения.

Схема устройства капельного полива.

Если использовать новые конструкции, то расход воды при капельном орошении может значительно снизится, а урожай будет богаче.

Но, как и у всякого нововведения, у такой методики существуют и свои противники, которые приводят все новые примеры неудачного внедрения капельного полива. Особенно критикуются применение таких систем в парниках и теплицах. Но неудачи происходят не из-за недостатков конструкции или метода, а из-за ошибок, которые совершают сами люди.

Читайте также:

Как сделать отопление теплицы из поликарбоната зимой.

Как вырастить огурцов в теплице: главные правила.

О правльной посадке огурцов читайте в этой статье.

Причины неудачного применения системы

Экономия воды при капельном орошении действительно может быть очень существенной (примерно в 2-3 раза по сравнению с обычным дождеванием). И именно это достоинство слишком часто оборачивается главным недостатком метода. Люди, которые впервые устанавливают конструкции такого полива, моментально начинают экономить, недодавая растениям необходимую им влагу. В итоге урожай получается даже ниже, чем при традиционных методах.

Преимущества капельного орошения.

Если брать в расчет расход воды на единицу площади парника, то при капельном поливе никакой экономии не происходит. Но нужно учитывать то, что при использовании таких систем практически вся влага попадает непосредственно к корням растения. Тогда как при дождевании солидная ее часть уходит на испарения, на орошение междурядий, вода стекает по неровностям рельефа, по грунту, не заполненному корневой системой. Поэтому при капельном орошении овощи развиваются гораздо быстрее, а урожай становится больше.

Поэтому водопотребление не становится меньше, и уменьшать расчетные нормы полива не нужно. Реальная экономия на площадь парника получается незначительной (примерно 20-25%). Но вот расход воды при поливе на один кг продукции действительно уменьшается в разы, поскольку капельный полив обеспечивает богатый урожай.

Вернуться к оглавлению

Индивидуальные потребности в поливе

Потребность растений во влаге зависит, прежде всего, от типа выращиваемой культуры и погодных условий. К ним относятся:

  • температура в теплице;
  • влажность воздуха;
  • интенсивность солнечного света или искусственного освещения.

На открытом грунте играют роль еще и экспозиция склона, сила ветра и состав почвы. Поэтому расчет потребления в каждом конкретном случае необходимо проводить индивидуально.

Система капельного орошения.

Для расчета поливной нормы можно использовать уравнение Пеннмана или замерять влажность грунта с помощью тензиометров или потенциометров. В крупных парниковых хозяйствах применяют специальное оборудование для контроля обеспечения растений влагой, анализируя суточные колебания динамики роста плода и диаметра стебля.

Но какой бы метод или их комбинация ни применялись, заранее расход воды при орошении не сможет предсказать ни один эксперт.

Основные требования каждой овощной культуры к воде четко изложены в специальных справочниках. Но для расчета влагопотребления необходимо знать показатели наименьшей влагоемкости для конкретного грунта. Потому что для разных по составу почв эти цифры могут отличатся в 1,5-2 раза. Определить влагоемкость можно только с помощью специального лабораторного анализа.

Вернуться к оглавлению

Зависимость частоты полива от состава почвы

Допустим, суточная потребность конкретной теплицы в воде известна. Но это не значит, что капельный полив должен проводиться непрерывно или включатся только 1 раз в сутки. Если поливать овощи слишком редко, то они неизбежно испытают так называемый «водный стресс», когда почва попеременно то пересыхает, то переувлажняется. Но и слишком частое орошение имеет свои негативные последствия:

Схема устройства микрокапельного полива.

  • увеличиваются затраты на обслуживание всей систем;
  • растет риск заболеваний растений из-за постоянной поверхностной влажности грунта;
  • корневая система формируется поверхностно, и урожайность (особенно корнеплодов) снижается.

Для того чтобы определить оптимальный режим капельного полива, необходимо знать 3 показателя влажности грунта: влажность завядания, наименьшую и предельную влагоемкость.

Наименьшая влагоемкость – это состояние грунта, при котором капилляры в почве наполнены водой, а поры воздухом. В таких условиях водно-воздушный баланс считается оптимальным. Если в теплице созданы именно такие условия, то капельное орошение настроено правильно.

При достижении уровня предельной влагоемкости все поры и капилляры в почве заполнены водой, а корневая система растений лишена кислорода. В этих условиях растения «задыхаются» и вымокают, клетки их гибнут, а корни загнивают.

Если содержание воды в грунте настолько незначительно, что разность осмотического давления недостаточна для передвижения воды к корням овощей, то подобные условия называют влажностью завядания. Растения теряют тургор, «задыхаются» и вянут, потому что у корневой системы просто не хватает сил впитывать влагу. В таком случае риск потери урожая очень велик, даже если увеличить расход воды или провести дополнительный полив позднее.

Все 3 показателя напрямую зависят от состава почвы. Например, на тяжелых глинистых и песчаных грунтах предельная влагоемкость очень близка к влажности завядания. И даже полив 1 раз в 2 дня может привести к переувлажнению почвы в день полива, но уже на следующий день земля может пересохнуть. А на суглинках, которые имеет большее количество капилляров, диапазон между предельной влагоемкостью и влажностью завядания гораздо шире. Такие почвы позволяют проводить орошение 1 раз в 2-3 дня.

Ширина промочки также зависит от состава почвы. Всего 1 капельная трубка способна производить капельный полив 2 рядов овощей. Но при этом расстояние между рядами с одним составом почвы может превышать 60 см, а другой грунт требует ширины междурядья всего в 30 см.

Вернуться к оглавлению

Примерный расчет расхода воды для полива

Для того чтобы вырастить большой урожай с помощью оросительной системы капельного типа, необходимо правильно и грамотно рассчитать не только расход воды, но и время, которое будет затрачено на орошение. Рассмотрим ситуацию на конкретном примере: участок 10мх20м, в 3 ряда высажены следующие культуры: огурцы, помидоры и капуста. Данный расчет учитывает применение системы орошения с использованием шланга и ленты. Приведенные в примере нормы полива взяты условно, так как у каждого сорта овощей водопотребление индивидуально.

  1. Для одного куста томата требуется 1,5 л воды в сутки. Высажены помидоры по схеме 2 двойных рядов, длиной по 10 м каждый. В итоге получаем порядка 100 растений. 20 м грядок обеспечивают расход 1,14 л/ч*2=2,28 л/ч. Если поливочная система будет работать в сутки всего 1 ч 20 мин, то ежесуточный расход воды составит 76 л/ч.
  2. Как правило, огурцы сажают плотнее друг к другу, чем помидоры. На указанной в качестве примера площади можно высадить 4 грядки по 10 м каждая. Эта культура потребляет примерно 2 л воды в сутки. При 1 поливке в течение 1 ч 45 мин расход составит 228 л/ч.
  3. Для капусты в заданных условиях можно взять 6 рядов длиной по 10 м, так как обычное расстояние между саженцами этой культуры – 0,4 м. Ежесуточное потребление влаги капустой – 2,5 л в сутки. При поливке 2 ч 10 мин каждый день расход составит 171 л/ч.

Таким образом, общий расход составит 475 л в час.

При выборе водяного фильтра необходимо знать еще и производительную способность того источника, из которого вы будет брать воду. Определить его несложно. Достаточно взять ведро объемом 10 л и засечь промежуток времени, за которое оно наполнится.

Для эффективной поливки нужно замерить уровень давления на выходе поливочной системы к водопроводу. Если оно будет выше, чем 1 атмосфера, то необходимо установить компенсатор, который отрегулирует напор.

Помните, что только правильно выбранная и настроенная система поливки может гарантировать богатый урожай. Само по себе капельное орошение – это точный и очень тонкий инструмент, который не допускает небрежного отношения к себе. Поэтому необходимо знать все нюансы и правила его применения. Только тогда он сможет полностью выполнить возложенные на него функции.

Сколько воды действительно нужно вашим растениям?

Проблемы с водой вызывают серьезную озабоченность по всей стране. Рост населения и урбанизация увеличивают нагрузку на водоснабжение, что делает все более важным использование воды более эффективно.

Важно не только количество воды, но и качество воды. Чрезмерный полив неизбежно приводит к вымыванию воды и удобрений. Это приводит к тому, что сток может попадать в землю или в поверхностные воды, если он не улавливается на месте.Сток удобрений, особенно азот и фосфор, может привести к росту водорослей в прудах и озерах. Многие производители сталкиваются с жесткими требованиями к стоку удобрений. Лучший способ минимизировать сток - более эффективный полив.

Требуется меньше воды

Хотя вопрос о том, сколько воды действительно нужно вашим растениям, прост, ответа нет. Удивительно, но информации о потребностях растений в воде мало. Последние несколько лет исследователи из Университета Джорджии и Университета штата Мэн изучали потребности в воде однолетних и многолетних растений.Хорошая новость заключается в том, что многим растениям требуется гораздо меньше воды, чем ожидает большинство людей. Например, мы вырастили петунии в 4-дюймовых горшках от рассады до товарного размера, добавив примерно полгаллона воды в течение 40 дней. Растениям давали не только достаточно воды, чтобы выжить, но и всю воду, необходимую для роста. Однако их поливали только тогда, когда это было необходимо, и не давали лишней воды.

Два датчика влажности почвы использовались для каждой группы из 12 растений петунии, которые орошались, когда объемное содержание воды в субстрате упало ниже 40 процентов. Определение потребности в воде

Поскольку каждая теплица уникальна, а погода меняется ежедневно и отличается от региона к региону, важно иметь некоторое представление о потребностях ваших растений в воде. Есть простой способ определить это.

Тщательно полейте растения утром и дайте им стечь не менее 30 минут. Затем взвесьте горшки, вернитесь через 24 часа и снова взвесьте горшки. Уменьшение веса - это количество воды, использованной растением.Использование воды будет меняться изо дня в день.

Основными факторами окружающей среды, влияющими на водопотребление, являются свет, температура и относительная влажность. Размер растений также играет важную роль: более крупным растениям требуется больше воды, чем небольшим. Определение ежедневного расхода воды несколько раз в течение производственного цикла, как в теплые, солнечные, так и в прохладные пасмурные дни, предоставит вам ценную информацию для управления водными ресурсами.

Чтобы использовать эту информацию для более эффективного полива, вам также необходимо знать, сколько воды подает ваша ирригационная система за заданный промежуток времени.С капельным орошением это просто. Поместите несколько капельниц в химический стакан, запустите капельницу на определенный период времени и измерьте, сколько воды было нанесено за минуту.

Для спринклерных систем простой способ определить, сколько воды получает каждый горшок, - это выстелить внутреннюю часть горшков пластиковыми пакетами, а затем поместить вторую емкость в пластиковый пакет. Обрежьте лишний пластик. В результате будут созданы мензурки того же размера, что и горшки, в которых растут растения. Запустите ирригационную систему на определенный период времени, а затем взвесьте горшки до и после полива, чтобы определить, сколько воды получают растения в минуту.

Теперь, когда вы определили, сколько воды используют растения и сколько воды применяется в минуту, вы сможете принимать более обоснованные решения о том, сколько воды использовать. Однако борьба с ежедневными колебаниями в использовании воды растениями из-за изменения погодных условий может потребовать частых корректировок. Если вы предпочитаете, чтобы эти настройки не выполнялись вручную, можно автоматизировать вашу систему орошения таким образом, чтобы растения получали только ту воду, которая им нужна.

Датчики повышают эффективность

Мы разработали ирригационную систему, которая может поливать растения при необходимости соответствующим количеством воды. Эта система использует датчики для измерения влажности субстрата. Стали доступны датчики влажности почвы, которые относительно недороги (60 долларов США), надежны и не требуют особого обслуживания.

Среди этих новых датчиков - датчики влажности почвы EC-5 и 10HS от Decagon Devices Inc. Датчик EC-5 хорошо работает в 4-, 5- и 6-дюймовых горшках.Датчик 10HS подходит для контейнеров размером от 6 дюймов.

Во многих случаях датчики могут быть подключены к компьютеризированным системам управления теплицами для непосредственного управления поливом. Работа с датчиком проста. Когда растение прорастает, оно набирает воду из субстрата, который высыхает. Так как датчик часто измеряет содержание воды в субстрате, компьютер окружающей среды теплицы замечает, когда содержание воды в субстрате падает ниже определенного заданного значения, и может включить систему орошения.Продолжительность периода орошения может быть заданной или контролироваться сенсором. Например, систему орошения можно включить, когда содержание воды в субстрате упадет ниже 40 процентов, и выключить, когда оно достигнет 45 процентов.

Растения контролируют потребность в поливе

При поливе, основанном на содержании воды в субстрате, растения в основном контролируют свой полив. В теплые солнечные дни растения быстро расходуют воду, что приводит к быстрому снижению влажности субстрата и более частому поливу.

Другой подход к использованию датчиков влажности почвы для управления поливом - их использование в качестве выключателя. Можно установить таймер на полив в определенное время. В это время клапан полива открывается только в том случае, если датчики обнаруживают, что содержание воды в субстрате ниже заданной уставки. Если субстрат еще влажный, датчик предотвращает открытие клапана полива. Если датчик разрешает полив, он может автоматически выключить полив при достижении заданного значения содержания воды в субстрате.

Столовая ложка в день

Мы изучили, как разные заданные значения полива влияют на различные растения. Петунии выращивали при уровне воды в субстрате от 5 до 40 процентов в течение трех недель. В облегченном торфяном субстрате уровень воды в субстрате 5-10 процентов является самым низким для большинства растений, а 50 процентов - это почти емкость контейнера. Рост растений увеличивался с увеличением содержания воды в субстрате, хотя разница между 25-, 30-, 35- и 40-процентными обработками была небольшой.Даже в субстрате, поддерживаемом на уровне 40 процентов воды, выщелачивание не происходило.

Более высокая уставка влажности субстрата приводила к более частому поливу, поэтому количество воды, которую получали растения, увеличивалось с увеличением уровня влажности субстрата. За трехнедельный период растения получали от 3½ до 22 унций.

20-процентной влажности субстрата было достаточно для выращивания качественных растений. В течение трехнедельного периода эти растения получали около 16 унций воды на одно растение.Это чуть больше 1 столовой ложки в день. Использование воды не было постоянным во время исследования; маленькие растения использовали 1 столовую ложку в день, в то время как большие растения использовали чуть меньше 2 столовых ложек в день. В целом, наблюдалась хорошая корреляция между ростом растений и количеством поливаемой воды. Исследование показало, что контроль орошения может быть эффективным методом контроля роста.

Марк ван Ирсель - профессор, а Джонгюн Ким - аспирант, факультет садоводства Университета Джорджии, (706) 583-0284; mvanier @ УЗА.Эда. Стефани Бернетт - доцент Университета штата Мэн, факультет наук о растениях, почве и окружающей среде, (207) 581-2937; [email protected] Это исследование было поддержано Фондом Фреда Глёкнера.

,

Полное руководство по капельному орошению (2020)

Это руководство научит вас всему, что вам нужно знать о капельном орошении .

Компоненты системы капельного орошения

Стоимость установки

Государственная субсидия

И рекомендации по обслуживанию и много другой ценной информации, которой я никогда больше нигде не делился.

Давайте начнем…

Доступная вода для сельского хозяйства уменьшается день ото дня из-за роста населения, индустриализации и нехватки осадков.Стало важным использовать современные технологии орошения, такие как капельное орошение, дождевание в сельском хозяйстве

Капельное орошение означает подачу необходимого количества воды непосредственно в корневую зону культурных растений через сеть небольших труб, это также называется микро-орошением или капельное орошение.

Это наиболее эффективный способ полива.

В системе капельного орошения вода подается к корням растений через набор пластиковых труб, боковых трубок и клапанов.Эти компоненты управляются с помощью капельницы и водяного насоса. С помощью системы капельного орошения стало легко подавать жидкие удобрения в корневую систему растений.

Преимущества капельного орошения

  1. Капельное орошение Экономия воды около 30% - 60% по сравнению с паводковым орошением
  2. Наблюдается повышение урожайности сельскохозяйственных культур до 230%.
  3. Повышение эффективности использования удобрений на 30 процентов
  4. Уменьшение роста сорняков
  5. Экономия Затраты на рабочую силу и электроэнергию намного ниже, чем при использовании других методов полива.
  6. Для капельного орошения планировка поля не является жизненно важной.
  7. Простота ухода Влага около корневой зоны
  8. Подача воды крайне необязательна и регулируется каждой форсункой.
  9. Помогите уменьшить эрозию почвы
  10. Разрешить использование соленой воды для орошения

Компоненты системы капельного орошения

Система капельного орошения состоит из водяного насоса, фильтрующего блока, магистрали, вспомогательной магистрали , боковые трубы, капельница и другие аксессуары, такие как регулирующие клапаны, манометр, бак для удобрений / трубка Вентури, торцевая крышка и т. д.

1) Водяной насос

Насос подходящей мощности Водяной насос используется для подачи воды через компоненты системы капельного орошения под определенным давлением.

Если источником водоснабжения является скважина, открытый колодец или канал, существует вероятность попадания в воду органических и неорганических инородных тел. В этом случае используйте всасывающий фильтр для получения относительно чистой воды.

Электродвигатели или дизельные двигатели являются основным двигателем насоса.В последнее время солнечный насос используется для популяризации его в целях капельного орошения.

2) Блок фильтра

При установке управляющей головки капельной системы должен быть фильтр хорошего качества. Фильтр используется для очистки воды от взвешенных примесей, подаваемой насосом, прежде чем она попадет в капельницы. Примеси в поливной воде могут вызвать закупорку отверстий и прохождение капельниц.

Успех капельниц во многом зависит от производительности фильтра.

Фильтрующий блок очищает взвешенные загрязнения поливной воды и предотвращает закупорку отверстий.на рынке доступны различные типы фильтров.

Доступны три типа фильтров, а именно: гидроциклонный фильтр, медиа-фильтр и сетчатый или дисковый фильтр.

Подходящие фильтры устанавливаются в зависимости от примесей, обнаруженных в источнике воды.

Если источником воды является скважина с меньшим содержанием физических примесей, можно установить только сетчатый фильтр.

Если источником воды является открытый колодец или канал, установите сетчатый или дисковый фильтр вместе с песчаным фильтром и гидроциклонным фильтром.

Для правильной работы системы капельного орошения используется двухступенчатый фильтр.

a) Фильтры для среды (песок / Гарваль)

Эти фильтры используются в качестве основного фильтрующего элемента, и они эффективны против неорганических взвешенных твердых частиц, биологических материалов и других органических веществ.

Медиа-фильтр состоит из мелкого гравия и песка выбранных размеров, помещенных в резервуар под давлением. Это помогает удалить органические вещества, такие как водоросли и другие растительные вещества, присутствующие в воде.

Фильтры состоят из круглого резервуара, заполненного слоями крупного песка и гравия разного размера, с клапанами или промывкой фильтрующего узла в случае засорения.

Фильтры доступны в различных размерах от 500 до 900 мм в диаметре с производительностью от 15 до 50 Cu.M. соответственно.

Гравийный или песчаный фильтр жизненно важен для открытого водоема, даже там, где водоросли растут в источнике воды.

b) Гидроциклонный фильтр

Если поливная вода содержит больше частиц песка, фильтры гидроциклонного типа удаляют эту частицу песка за счет создания центробежной силы и отделяют песок от воды.

Фильтр гидроциклонов генерирует вращательное движение, в результате чего частицы песка отделяются от воды и задерживаются в резервуаре для хранения на дне этого устройства.

Фильтры гидроциклонного типа выпускаются разных размеров для разной пропускной способности.

c) Сетчатый фильтр:

Как правило, сетчатый фильтр представляет собой цилиндр с одинарной или двойной перфорацией, помещенный в пластиковый или металлический контейнер
для удаления примесей.

Обычно в фильтрах этого типа используются сита от 100 до 200 меш. Его необходимо периодически очищать и проверять на предмет удовлетворительной работы любой капельной системы.

Сетчатый фильтр устанавливается с гравийным фильтром или без него, в зависимости от качества поливной воды. Сетчатый фильтр изготовлен из неагрессивного пластика или металла.

c) Дисковый фильтр:

Дисковый фильтр входит в состав блока вторичного фильтра.Множественные круглые диски фильтруют воду. он изготовлен из высококачественного пластика.

3) MainLine:

Основная линия передает весь объем воды для оросительной системы. Он соединяет различные подсети с источником воды. Основные трубы обычно изготавливаются из гибкого материала, такого как ПВХ (поливинилхлорид) или пластмассы.

Магистральная труба пропускает воду от фильтрующей установки к вспомогательной магистрали. Диаметр этой трубы зависит от пропускной способности системы капельного орошения, обычно 2.Труба ПВХ диаметром 5–4 дюйма, используемая в качестве магистрали.

Магистраль и вспомогательная магистраль должны быть установлены телескопическим способом, то есть сначала должна быть подсоединена труба большего диаметра, а затем трубы меньшего диаметра. такое расположение помогает поддерживать равномерное давление в системе.

Магистрали должны быть заглублены не менее чем на 45 сантиметров, чтобы не повредить их во время культурной эксплуатации.

4) Вспомогательный элемент:

Вспомогательный канал подачи к боковым каналам с одной или обеих сторон.Он изготовлен из полиэтилена средней плотности (ПЭ) или ПВХ. Следует соблюдать баланс между диаметром основной и вспомогательной сети.

Они определяются с учетом скорости разгрузки, количества подводящих магистралей и потерь на трение в трубах

5) Боковые стенки:

Боковые стенки изготовлены из полиэтилена низкой плотности (LDP) или линейный полиэтилен низкой плотности (ЛПЭНП) и доступен в различных размерах 12 мм, 16 мм и 20 мм.

В зависимости от наличия воды, урожая и расстояния устанавливаются отводы 12 мм и 16 мм.

6) Капельницы:

Капельницы также называются эмиттерами. Капельница сливает воду из боковой трубы в почву.

Капельницы

обычно изготавливаются из полипропилена.

В основном на рынке доступны два типа капельниц. Онлайн-капельница и поточная капельница

a) Онлайн-капельница:

В этом типе капельницы они размещаются сбоку, поэтому она называется онлайн-капельницей.эти капельницы крепятся сбоку путем пробивания отверстий подходящего размера в трубе.

Этот тип капельницы используется в основном для выращивания фруктовых культур, таких как кокос, гранат, гуава и т. д., доступная пропускная способность воды 2 л / час, 4 л / час и 8л / час.

b) Встроенная капельница:

В этом типе капельница размещается внутри боковой трубы. Расстояние между двумя капельницами одинаковое. Доступны три типа встроенных капельниц.

Капельницы без компенсации давления (NPC): Это очень простая капельница, которая не поддерживает равномерное давление

Капельницы с компенсацией давления (ПК): Эта капельница более совершенная, она поддерживает равномерное давление во всех капельницах.в основном используется для тепличных культур, цена на капельницу немного высока.

Капельницы без дренажа: Эта капельница в основном используется в беспочвенных средах, таких как кокопиты , перлит и вермикулит.

7) Блок внесения удобрений

Прямое внесение удобрений посредством капельного орошения повысило эффективность использования удобрений наряду с экономией труда и денег.

С помощью этого устройства для внесения удобрений жидкие удобрения подаются на растения через систему капельного орошения.

Применение удобрений в ирригационной системе осуществляется либо обводной напорного бака или венчурным насосом или прямой
системы впрыска.

8) Манометр:

Используется для определения давления воды в системе капельного орошения.

8) Регулирующие клапаны

Это значение используется для управления расходом воды. Они состоят из пластика и железа.

9) Промывочный клапан:

Промывочный клапан расположен на конце трубы суб-Мэна, которую он использует для смыва грязи.

10) Обратный клапан

Обратный клапан используется для остановки возврата воды к водяному насосу.

11) Воздушный клапан

Помогает предотвратить засасывание грязи капельницами и выпустить воздух в систему капельного орошения.

12) Заглушка

Заглушка используется для закрытия одного конца боковой трубы, которую снимают во время очистки.

Типы систем капельного орошения

Их множество типов, доступных для капельного орошения, здесь объясняется только два популярных типа.

1) Система капельного орошения

В системе капельного орошения эмиттер и боковая труба размещаются на поверхности почвы. Это самый распространенный и популярный вид капельной системы.

Подходит как для широких, так и для пропашных культур. Легко использовать капельницу с поверхности для наблюдения и проверки, изменения и очистки излучателей, наблюдения за структурой влажности поверхности и измерения скорости отдельных испускаемых выбросов.

2) Подземная капельная система

В подпочвенной системе капельного орошения отвод размещается под землей и рядом с зоной корневой зоны растений.В этой системе вода медленно подается под поверхность через эмиттеры.

Подповерхностные капельные системы получили более широкое распространение благодаря устранению ранее существовавших проблем засорения в значительной степени.

Из-за метода подповерхностных капель меньше вмешательства в сельское хозяйство или какие-либо культурные практики и, возможно, больше эксплуатационная жизнь.

Подземная капельная система практически не мешает выращиванию или другим культурным практикам и, возможно, продлевает срок службы.

Система капельного орошения, подходящая для этой культуры

C, клубника
Тип культуры Урожай
Овощи Помидоры, стручковый перец, капуста, чили,
цветная капуста, лук, соленая, горькая тыква
Огурец, тыква,
шпинат и т. Д.
Денежные культуры Сахарный тростник, табак, хлопок
Урожай Poyhouse Гербера, голландская роза, гвоздика, антуриум,
Лилия, орхидеи
кофе, кокос, чай, каучук и т. Д.
садовые культуры банан, виноград, цитрусовые, апельсин,
гранат, манго, гуава,
ананас, кешон, кокос,
папайя, арбуз, мускус, мускус , Лимон и т. Д.

Стоимость системы капельного орошения

Стоимость установки системы капельного орошения зависит от различных факторов. rs, например, какую культуру вы сеете, тип местности, качество почвы, схему посева, качество воды, качество капельного материала, компанию-производителя системы капельного орошения и дизайн системы капельного орошения.

Стоимость системы капельного орошения на акр для овощных культур будет около рупий. Приблизительно 50 000–65 000 на акр, а для плодовых культур, если они высаживаются по схеме 3x3, стоимость одного акра для системы капельного орошения составляет приблизительно 35 000–40 000.

Правительство Рекомендуемая стоимость системы капельного орошения:

Ссылка: Pradhan Mantri Krishi Sinchayee Yojana (PMKSY)

Если вы используете материалы, не принадлежащие ISI, ваша первоначальная стоимость одного акра составит около 20 000-25 000 рупий за овощи. урожай, но срок службы материала без ISI в течение 2-3 лет с высокими затратами на обслуживание.в то время как срок службы материала ISI составляет 7-10 лет при низких эксплуатационных расходах.

Государственная субсидия на капельное орошение

Субсидия, доступная для капельного орошения в Индии под руководством Прадхана Мантри Криши Синчайи Йоджана (PMKSY). Правительство Индии предоставляет субсидию на одного бенефициара до 5 гектаров. Была оказана финансовая помощь по разным категориям и в зависимости от категории штатов для десертных, засушливых, холмистых и других регионов страны. Для получения более подробной информации посетите сайт PMKSY или свяжитесь с ближайшим сельскохозяйственным офисом.

Список ведущих компаний капельного орошения

Это ведущая компания-производитель капельного орошения в Индии

  1. Netafim Irrigation
  2. Jain орошение
  3. Finolex Plasson Industries

Руководство по обслуживанию системы капельного орошения

Капельное орошение - это механическая система. Что работает при определенном давлении воды, если система должна работать хорошо в течение длительного времени, давление должно поддерживаться должным образом.

Даже если используются материалы хорошего качества и установлены с соблюдением научных требований, существует вероятность отказа. если обслуживание поля не является надлежащим и регулярным, поэтому управление системой капельного орошения очень важно.

Следуйте этим рекомендациям для обслуживания системы капельного орошения -

A. Общий уход

  1. Проверьте все работающие эмиттеры или капельницы, проверьте утечку воды и убедитесь, что вода равномерно распределяет все углы этого участка / поля ,
  2. Проверьте зону раздачи воды. Если обнаружены их сухие участки, увеличьте время работы капельного орошения.
  3. Если наблюдается скручивание, загиб, разрез, перфоратор на боковом, вспомогательном клапане, немедленно исправьте это.

B. Очистите фильтры.

Фильтр является основной частью комплекта капельного орошения. если фильтр не работает должным образом, велика вероятность полного отказа системы капельного орошения.

1. Песочный фильтр :

Очищайте песочный фильтр каждую неделю.Устройство обратной промывки, доступное в песочном фильтре, использует это, позволяя воде течь через крышку вместо водяного клапана и перемешивая песок в фильтре. Таким образом, отходы, которые находятся на дне, будут приходить и выходить из воды.

2. Сетчатые фильтры / кубический фильтр:

Откройте крышку и удалите грязь и захваченный мусор. Откройте фильтр, удалите опилки и резиновые уплотнения и очистите его с обеих сторон.

3. Вспомогательная труба и боковые трубки:

Иногда мелкие частицы и грязь проходят через фильтр и накапливаются в основных и вспомогательных баках, боковых сторонах , Поэтому, чтобы очистить эти трубки, снимите торцевую крышку, промывочный клапан и пусть вода течет.Делайте это до тех пор, пока не пойдет чистая вода.

C. Химическая обработка:

Капельницы перестают работать из-за различных щелочей
Если количество карбоната, бикарбоната, хлоридов, серы, марганца и кальция, сульфата серы выше в воде, появляются желтоватые точки и красноватые На капельнице появляются точки, а если количество железа высокое, после проведенной обработки на капельнице появляются красные пятна.

1. Кислотная обработка:

Кислотная обработка полезна для капельниц и боковых сторон, заблокированных различными химическими примесями, включая остатки удобрений.Эта примесь может быть удалена обработкой системы либо соляной кислотой, либо серной кислотой, либо азотной кислотой, из которых соляная кислота в дозе 25% лучше всего подходит для кислотной обработки.

Метод:

Взять необходимое количество соляной кислоты в воде. Введите его в систему через трубку Вентури или резервуар для фертигации. Система заполнена водой, впустить раствор кислоты в систему до pH 4. Проверьте pH с помощью лакмусовой бумаги как в начале, так и в последней капельнице.закрыть систему на 24 часа.
Подкисленная вода в системе реагирует с солями, отложившимися в системе, и растворяет ее. Через 24 часа их подкисляющая вода вместе с растворенными твердыми частицами выходит из системы путем мгновенного испарения.

2. Реакция хлора :

Хлорирование полезно для удаления биологических примесей, собранных в системе капельного орошения. Хлорирование может осуществляться либо с использованием гипохлорита кальция, гипохлорита натрия, хлора или гидрохлорида кальция, либо с помощью отбеливающего порошка.

Метод
Растворите необходимое количество отбеливающего порошка в воде за день до обработки. Этот раствор пропускают в систему через Вентури или резервуар для фертигации и позволяют ему оставаться в системе в течение 24 часов. после этого откройте боковые крышки боковых сторон и запустите систему примерно на час, чтобы загрязнения были выброшены из системы

Недостатки / ограничения капельного орошения

Несмотря на наблюдаемые успехи, некоторые проблемы возникли в механике нанесения. вода с капельным оборудованием для некоторых почв, качества воды и условий окружающей среды.Некоторые важные ограничения описаны ниже:

1) Постоянные требования к техническому обслуживанию

Засорение капельницы считается наиболее серьезной проблемой капельного орошения, если не будут приняты превентивные меры. Следовательно, необходимо правильно фильтровать воду.

Кроме того, соли и химические отложения могут откладываться в эмиттере или боковой трубе, что приводит к засорению, это отрицательно влияет на скорость и равномерность полива, увеличивает затраты на техническое обслуживание и приводит к повреждению урожая и снижению урожайности, если не обнаружено на ранней стадии и исправлено своевременно.

К другим проблемам технического обслуживания относятся утечки в трубопроводах и растрескивание трубок. Грызуны, койот, кролики и собаки могут жевать и повредить капельницу, а муравьи и другие насекомые иногда имеют увеличенные отверстия в капельницах.

2) Экономичность - Начальная стоимость

Поскольку капельное орошение требует большого количества оборудования, начальные инвестиции и годовые затраты могут быть высокими по сравнению с наземными или переносными дождевальными системами полива.

Фактические цены на оборудование для систем капельного орошения будут сильно различаться в зависимости от типов культур, классов трубопроводов, оборудования для фильтрации, оборудования для внесения удобрений и т. Д.,

3) Опасность засоления

Если капельная система используется в условиях засоления, необходимо проявлять особую осторожность для правильного управления работой капельного орошения.

4) Технические знания

Для проектирования, установки и последующей эксплуатации системы капельного орошения требуются высокие навыки.

Потребовались технические усовершенствования конструкции излучателей, арматуры, фильтров и т. Д.;

Процедуры разработки для предотвращения или устранения засорения эмиттера и отказа оборудования были трудными, а разработка надлежащих методов внесения удобрений и других химикатов иногда была проблемой.

Капельный полив требует более высокого уровня управления проектированием и техобслуживанием, чем другие методы полива.

Источник изображения:

.

Гидропонное земледелие | Система орошения - теплицы

Гидропоника определяется как:

Система орошения, при которой корни сельскохозяйственных культур получают сбалансированный раствор питательных веществ, растворенный в воде, со всеми химическими элементами, необходимыми для роста растений, которые могут расти непосредственно на минеральном растворе или в инертной среде или субстрате.

Существуют различные типы гидропонных систем, классифицируемые следующим образом:

Гидропонные системы в жидкой среде

Эти системы не имеют субстратов для развития сельскохозяйственных культур, которые производятся непосредственно на водоносных системах различными заводами, такими как:

  • Глубокая гидропоника: NGS.
  • Плавающие системы: Плавающие полки.
  • Системы глубины воды: NFT.
Системы гидропонных субстратов

В этих системах Мы выращиваем на инертных субстратах, орошаемых капельным орошением, субирригацией или экссудацией. Наиболее распространенными субстратами являются перлит, минеральная вата, кокосовое волокно и торф.

  • Скамейки или бороздки.
  • Растет в мешке.
  • Выращивание в отдельных контейнерах или каналах.
  • Поверхность для выращивания (шлифованная).
Аэропонные системы

Включает выращивание в системах, в которых корень остается на открытом воздухе, в контейнере, который хранит его в темноте, где питательный раствор применяется в виде аэрозольного тумана. Использование гидропонных систем оправдано при выращивании товарных культур, требующих строгого контроля производственного процесса, таких как выращивание в теплицах тыкв, томатов, перца и клубники.

СЛИВ В ГИДРОПОНИКЕ:

Гидропонные системы требуют указания процента дренажа, особенно в системах гидропонных субстратов, чтобы не засолить корневую среду, особенно при использовании гидропонных соленых вод.

В зависимости от использования дренажной системы классифицируются на:

Системное решение потеряно:

Сточная вода в этих системах не используется повторно в гидропонном производстве. Обычно он используется для орошения других низинных участков под традиционными системами орошения, так как они содержат неиспользованные питательные вещества, необычные для гидропонной системы.

ПРЕИМУЩЕСТВА ГИДРОПОННОЙ СИСТЕМЫ

  • Обеспечивает постоянную влажность корневой системы в любое время, независимо от погоды или времени роста растений.
  • Снижение риска чрезмерного орошения, так как удушение корня
  • Обеспечивает лучшее планирование и эксплуатацию плантации.
  • Оптимизация затрат на воду и удобрения.
  • Обеспечивает орошение всей корневой зоны.
  • Значительно снижает проблемы, связанные с болезнями, вызываемыми почвенными патогенами
  • Повышает урожайность и улучшает качество продукции.

ДЕТАЛИ ГИДРОПОННОЙ СИСТЕМЫ

  • Теплица.
  • Начальник автоматизированной системы полива и поддержки растений.
  • Насосное оборудование.
  • Емкости для концентрированных растворов питательных веществ.
  • Применение фертигации в воздуховоде.
  • Планировщик полива.
  • Приемник дренажа или сточных вод.

ИСПОЛЬЗУЕМЫЕ МАТЕРИАЛЫ

Установка орошения из ПВХ или ПЭ и необходимые аксессуары. В зависимости от типа гидропонного орошения могло иметь:

  • Таблицы для выращивания.
  • Мешки для культур
  • Особые культуральные системы (NGS, NFT).
  • Система обработки опорных каналов.
  • Сливные поддоны.
.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.