ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Обогрев почвы в теплице


Система обогрева грунта в теплице: виды, эффективность, кабелем, воздухом

Выбирая способ обогрева грунта в теплице, важно учитывать особенности и преимущества каждого из них. Сегодняшний материал поможет разобраться в этом, определиться с методикой, а также узнать механику организации обогревательного процесса.

ПоказатьСкрыть

Эффективность повышения температуры грунта

Удерживание нормальных параметров микроклимата очень важно при выращивании растений, особенно теплолюбивых, ведь от температуры зависит скорость роста, а также устойчивость культуры к заболеваниям.

Оборудование теплицы подогревом грунта гарантирует соблюдение этих норм, помимо этого к преимуществам этого способа относят:

  1. Сохраняет тепло. Исключается потеря ресурса через почву.
  2. Высадка без привязки к сезону, что даёт возможность выращивать культуры в любое время года.
  3. Высокая скорость роста. В условиях тёплой почвы коневая система развивается более интенсивно, что, в свою очередь, отражается на наземной части, в том числе на плодах.
  4. Повышение урожайности.
  5. Растениям не страшны заморозки.

Виды системы почвенного обогрева: основные разновидности

Существует три способа обогрева почвы:

  • естественный;
  • биологический;
  • технический.
При первом способе грунт нагревается солнцем, при втором — биологическими материалами, которые при разложении выделяют тепло (навоз, солома, листья). Технический способ и его виды рассмотрим более детально в последующих пунктах.

Знаете ли вы? В Исландии теплицы устраивают на гейзерах.

Водяные контуры

Универсальный способ, позволяющий поддерживать температуру как почвы, так и воздуха. Суть состоит в укладывании под верхний слой грунта отопительной системы от небольшой котельной или же от центральной системы.

  • Плюсы:
  • равномерное прогревание площади;
  • не снижает влажность воздуха;
  • увлажняет почву посредством конденсата, образующегося на трубах;
  • доступность.

Кабельный подогрев

Новый и максимально эффективный способ, в котором нагревательным элементом служит кабель, размещённый змейкой в толще земли.

  • Плюсы:
  • возможность выращивать любые культуры;
  • высокая скорость роста растений;
  • повышение урожайности;
  • автоматическая регулировка температуры;
  • долговечность установки;
  • простота монтажа;
  • доступность.

Воздушный обогрев

По встроенным в почву трубам движется воздух от обогревающего устройства. Альтернативой является обогрев с помощью печи, установленной в приямке, а дымоход пускают под землёй, что позволяет обогреть воздух и почву.

Важно! Воздушный обогрев очень сушит воздух, поэтому рекомендуется дополнительная установка увлажнителя.

Для быстрого принятия мер и повышения показателя температуры можно использовать переносные нагревающие устройства: конвекторы, калориферы, воздушные пушки и т. д.

  • Плюсы:
  • доступность;
  • долговечность;
  • лёгкость монтажа.

Подогрев пластиковыми трубами

Прокладывая пластиковые трубы под верхним слоем земли, можно организовать как водное, так и воздушное отопление. Всё зависит от того, какой нагревательный элемент вы выберете. Для почвенного обогрева желательно использовать пластиковые трубы — они не ржавеют, имеют более длительный срок эксплуатации, а также быстрее выделяют тепло, но стоит помнить, что температура в системе не должна превышать 95°С.

Плёночными материалами

В этом случае используется инфракрасная плёнка, которая обладает рядом преимуществ:

  • не влияет на влажность воздуха;
  • показатели регулируются автоматически;
  • есть возможность создавать различные температурные зоны;
  • подавляет рост патогенных микроорганизмов;
  • лёгкость монтажа;
  • срок эксплуатации порядка 30 лет.

Как сделать обогрев?

Монтаж систем осуществляется по единому принципу — обогревающий элемент размещается подпочвенно, по следующему алгоритму:

  1. Снять верхний слой грунта, примерно 40 см.
  2. Сравнять дно, после чего засыпать 5 см песка и утрамбовать.
  3. Сверху расстелить термоизоляционную плёнку, например, пенополистирол — благодаря этому есть возможность сохранить тепло и не дать ему уходить вглубь почвы.
  4. Засыпать 5 см песка.
  5. Уложить нержавеющую сетку с 5–10-сантиметровыми ячейками.
  6. Прокладка нагревательных элементов.
  7. Засыпать влажным песком — слой толщиной 5 см.
  8. Всё накрыть сеткой — для этой цели подойдет как пластиковая, так и нержавеющая. Такой слой необходим для того, чтобы защитить источник обогрева от каких-либо повреждений.
  9. В завершение засыпаем конструкцию плодородной почвой — для этого изначально снятый слой смешивают с удобрениями.

Советы садоводам

Выбирая систему для обогрева теплицы, важно учитывать затраты на её эксплуатацию, а также имеющееся месторасположение. В случае с водным отоплением оно целесообразно лишь в том случае, если теплица находится около дома, что позволяет подключиться к центральной системе, так как сооружение отдельной котельной — финансово ёмкое. Электрические отопительные приборы поглощают достаточно большое количество электроэнергии, что отразится на счёте за коммунальные услуги, вдобавок они сушат воздух, что негативно влияет на растения и требует установки увлажнителя. По соотношению затрат и эффективности самым оптимальным считают кабельный обогрев: для помещения площадью 24 м² достаточно 92 м кабеля мощностью 1650 Вт. Успех проведённой процедуры также зависит от того, насколько долго будет задерживаться тепло в помещении.

Для этого следует подумать о термоизоляции как самого помещения, так и нагревательных элементов. Теперь вы знаете как сделать помещение тёплым своими руками, зачем термоизоляция в теплице, а также какую технологию выбрать, учитывая соотношение затрат и эффективности. Выращивайте овощи в необходимых для них температурных условиях, что поможет сполна окупить затраты благодаря высокому показателю урожайности.

3 Способы обогрева теплицы бесплатно

Теплицы могут быть интересной средой для роста. Это связано с тем, что стандартные тепличные материалы, такие как стекло и пластик («остекление»), очень хорошо пропускают свет и тепло и очень хорошо отводят тепло. При такой большой площади застекленной поверхности теплицы обычно перегреваются в течение дня, если их не контролировать. А поскольку стекло и пластик не обеспечивают теплоизоляции, ночью они теряют тепло, что приводит к их замерзанию. Возьмем, к примеру, этот октябрьский день в Боулдере, штат Колорадо: температура в цельностеклянной теплице колебалась от максимума 110 F до минимума 30 F за один день.Растения, как и люди, этого не любят.

Основная задача тепличного выращивания - это стабилизация этих колебаний температуры. Обычно для этого люди направляют энергию через системы отопления или охлаждения в теплицу. Но более разумный и устойчивый способ создания стабильной тепличной среды - использовать избыточную солнечную энергию, поступающую в течение дня, хранить ее и использовать в ночное время. Или, если вы работаете с существующей теплицей, добавьте эффективный обогреватель, который использует дешевое и возобновляемое топливо.Все эти стратегии требуют понимания и исследования и требуют определенных первоначальных затрат, но окупаемость в виде дополнительного роста и долгосрочной экономии того стоит.

Кроме того, помните, что нет более дешевой энергии, чем энергия, которую вам не нужно использовать, поэтому при проектировании новой теплицы строите ее так, чтобы она не требовала большого нагрева и охлаждения. Это означает создание воздухонепроницаемой изолированной конструкции, использование подходящих кровельных материалов и ориентацию теплицы с остеклением на юг - откуда исходит весь наш свет в Северном полушарии.Если вы выращиваете в существующей теплице, вы можете, среди прочего, изолировать теплицу и герметизировать воздуховоды. Снижение потребности в энергии до минимума - это всегда первый шаг, затем используйте следующие стратегии.

1) Хранение солнечной энергии в тепловой массе

Самый простой и распространенный способ выровнять температуру в теплице - использовать тепловую массу, также называемую радиатором. Термическая масса - это любой материал, накапливающий тепловую энергию. Большинство материалов делают это в той или иной степени, но некоторые делают это намного лучше, чем другие.Например, вода удерживает примерно в 2 раза больше тепла, чем бетон, и примерно в 4 раза больше, чем почва.


Объединение массы делает две вещи. Во-первых, он поглощает лишнюю энергию в течение дня, создавая охлаждающий эффект. Когда температура падает ночью, он начинает выделять эту энергию, тем самым «нагревая» теплицу. Примечание: хотя я говорю «охлаждение и нагрев», тепловая масса на самом деле не обеспечивает энергию, она просто накапливает ее и высвобождает позже, как аккумулятор.Размер батареи (или количество энергии, которое вы можете сохранить) зависит от теплоемкости материала и вашей массы. Ниже приведена таблица, в которой сравниваются несколько различных источников тепловой массы и их теплоемкости.

Как к

Самый распространенный способ использования термальной массы - это бочки с водой, потому что они обладают такой высокой теплоемкостью. Уложив несколько бочек с водой на 55 галлонов в теплицу, производитель может добавить много тепловой массы. Бочки следует штабелировать под прямыми солнечными лучами, часто на северной стене.Поскольку растениям будет теплее вокруг бочек с водой, поместите более нежные растения, такие как посевные лотки или культуры для теплой погоды, на бочки или рядом с ними. Выращивание с использованием системы аквапоники - симбиотического выращивания рыб и растений - имеет приятное преимущество: аквариум с рыбой увеличивает тепловую массу вдвое. Другие варианты включают в себя строительство теплицы из бетона или камня - например, использование бетонной северной стены или каменного пола. Даже почва на грядках добавит тепловую массу.

Хотя установка и проста в установке, тепловая масса может медленно реагировать.На распространение тепла по теплице требуется больше времени, что снижает его эффективность. Но, учитывая низкую первоначальную стоимость, добавление термальной массы в теплицу является популярным методом продления вегетационного периода. Это может не дать вам круглогодичного роста всего, но, безусловно, вывести вашу теплицу на новый уровень.

2) Установить теплообменник

Чтобы на один шаг превзойти стандартную тепловую массу, вы можете включить теплообменник для циркуляции воздуха с по , являющегося источником массы.У этой идеи много названий. Ее часто называют климатической батареей или подземной системой отопления и охлаждения (SHCS) - название, популяризированное Джоном Крукшенком из sunnyjohn.com. Ceres Greenhouse Solutions, базирующаяся в Боулдере, штат Колорадо, также имеет разновидность системы, называемую системой передачи тепла от земли к воздуху (GAHT).

Существует множество конфигураций, но механизм передачи и хранения энергии всегда один и тот же. Когда теплица нагревается в течение дня, вентилятор нагнетает теплый влажный воздух изнутри теплицы через сеть труб, заглубленных на глубину до 4 футов (большинство систем состоит из пары слоев труб, заглубленных на 4 и 2 фута ниже). поверхность).Падение температуры заставляет водяной пар конденсироваться, и в этом процессе (называемом фазовым переходом) выделяется энергия. Эта энергия хранится в почве, заставляя ее нагреваться. Таким образом, круглый год под теплицей образуется большая масса теплой почвы. Ночью, когда в теплице понижается температура, снова включается вентилятор и забирает тепло из почвы. Это относительно простая, проверенная временем система; Теплообменники земля-воздух используются в домах на протяжении десятилетий.



Теплообменник "земля-воздух" работает очень хорошо по двум причинам: во-первых, доступная масса (размер батареи, как мы упоминали ранее) огромен. Например, под теплицей размером 12 на 16 футов имеется 768 кубических футов почвы, если принять глубину 4 фута. Если вы выровняете всю северную стену той же теплицы двумя рядами по 55 галлонов бочек с водой (16 бочек), их масса будет в общей сложности 118 кубических футов. Это означает, что с учетом объемной теплоемкости, указанной в таблице выше, подземный теплообменник имеет примерно вдвое большую мощность, чем бочки с водой.Более того, потому что теплообменник земля-воздух соединяется с землей и, таким образом, теоретически имеет бесконечную мощность. Чтобы лучше понять это, см. Изображение теплиц CERES здесь.

Во-вторых, поскольку воздух активно проталкивается через «батарею», это увеличивает скорость теплообмена. Более горячий / прохладный воздух распределяется по теплице более равномерно, предотвращая образование холодных карманов. Кроме того, использование вентиляторов позволяет использовать массу, когда вы хотите: термостат включает и выключает вентилятор при определенных заданных температурах.То есть вентилятор начнет закачивать теплый воздух в почву, когда теплица достигнет заданной температуры (скажем, 80 F), и поднимет его обратно, когда она опустится ниже 50 F. Таким образом, подземный теплообменник дает вам некоторый контроль над термическая масса; это все равно что взять тепловую массу и сделать ее умнее.

Варианты

Материал батареи может отличаться. Некоторые люди засыпают территорию под теплицей гравием или камнями вместо земли. Если у вас уже есть теплица или вы не можете проводить земляные работы на своем участке, вы можете создать альтернативный наземный аккумулятор.Вы можете построить утепленную массу из почвы или другого материала, например, ящик из речных камней перед теплицей. Система работает так же, только другое расположение тепловой массы.

3) Используйте эффективный обогреватель на возобновляемых источниках энергии

Вышеупомянутые системы показывают вам, как использовать солнце и накапливать солнечную энергию, что является хорошим первым шагом к естественному отоплению. Если необходимо дополнительное отопление, подумайте об высокоэффективной системе отопления, которая работает на дешевом и возобновляемом топливе.

Одной из распространенных систем, используемых в теплицах, является нагреватель реактивной массы, сверхэффективный вариант дровяной печи. Вместо того, чтобы просто выпускать горячий воздух прямо из дымохода, как это делает стандартная дровяная печь, обогреватель ракетной массы сначала направляет горячий воздух через массу глины, кирпича или камня, прежде чем он истощится. Воздух нагревает массу, которая удерживает тепло, и медленно излучает его обратно в теплицу в течение длительного периода времени, даже после того, как печь погасла.В обогревателе ракетной массы также используется двойная камера сгорания, что делает его намного более эффективным, чем обычная дровяная печь - пара часов горения небольшим количеством дров может обогреть теплицу за ночь. Большинство нагревателей ракетной массы - это системы DIY; вам нужно будет изучить и спроектировать систему, которая подходит для вашей теплицы, используя множество планов и пояснений в Интернете.



Еще одна распространенная тепличная система - это нагреватель компостных куч, который использует магию аэробных бактерий для разрушения органических материалов и выделения отработанного тепла.Как и подземный теплообменник, нагреватель компоста также основан на теплообменнике: вода циркулирует по трубам, проходящим через большую компостную кучу. Из-за аэробного разложения компостная куча может поддерживать температуру 100-160 F. Затем нагретая вода циркулирует по теплице, где она распределяет тепло. Из всех систем эта, вероятно, потребует больше всего усилий, чтобы наладить работу и продолжить работу. Вы должны сначала построить свою компостную кучу из подходящего материала и консистенции, чтобы довести ее до высокой температуры, и продолжать добавлять к ней или перестраивать кучу по мере ее разложения.Однако большая, правильно построенная свая (см. Рисунок ниже) может обогреть теплицу площадью 1000–2000 кв. Футов на зиму. По этим причинам обогреватели для компоста лучше всего подходят для больших теплиц.

Сводка

Куда идти? В игре участвует несколько факторов:

Каковы ваши цели (сколько места вы пытаетесь обогреть и в какой степени)? Каждая система имеет разную мощность нагрева. Какой контроль вы хотите иметь? (Некоторые системы активны, а некоторые пассивны.(то есть, вы можете запустить нагреватель массы ракеты, но вы мало что можете сделать, чтобы заменить бочки с водой).

С какими ограничениями вы уже работаете? (например, сложные / каменистые почвы исключают возможность использования подземного теплообменника.) Подумайте, сколько места в теплице у вас есть для таких вещей, как бочки с водой. И, что наиболее важно, подумайте о времени и трудозатратах, затрачиваемых на установку каждой системы, а также о текущем времени / трудозатратах, которые могут потребоваться для запуска каждой системы (т. Е. Подземный теплообменник можно автоматизировать, тогда как нагреватель ракетной массы не может быть).Опять же, хотя вам нужно заранее сделать домашнюю работу, лучшая награда, которую вы можете получить, - это теплая оранжерея, производящая свежие продукты зимой (и бесплатно!)

(вверху) Фотографии предоставлены Ceres Greenhouse Solutions: трубы в подземном теплообменнике для теплицы 12 x 20. 3D-модель подземного теплообменника под землей.

(В центре) Фото любезно предоставлено Verge Permaculture: обогреватель ракетной массы в теплице.

(Внизу) Фотографии любезно предоставлены Golden Hoof Farm: компостная куча в середине строительства с трубками для аэрации.Готовая компостная куча.


Все блоггеры сообщества MOTHER EARTH NEWS согласились следовать нашим рекомендациям по ведению блога, и они несут ответственность за точность своих сообщений. Чтобы узнать больше об авторе этого сообщения, нажмите на ссылку автора вверху страницы.

.

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Отопление теплицы | HowStuffWorks

Теплицы создают защищенную среду для растений, используя солнечное излучение для улавливания тепла. Эта система обогрева и циркуляции воздуха помогает создать в теплице искусственную среду, которая может поддерживать растения, когда наружная температура слишком низкая или переменная. Тепло проникает в теплицу через ее покрытие из стекла или пластика и начинает нагревать предметы, почву и растения внутри. Нагретый воздух возле почвы начинает подниматься и немедленно заменяется более холодным окружающим воздухом, который начинает нагреваться.Этот цикл повышает температуру внутри теплицы быстрее, чем воздух снаружи, создавая более теплый микроклимат.

В умеренном климате полностью обогревает теплицу солнце, но там, где температура резко падает, может потребоваться искусственное обогревание для поддержания температуры выше нуля. Там, где одни теплицы имеют доступ к центральному отоплению из главного здания, другие вынуждены полагаться на природный или баллонный газ, змеевики или вентиляторы.Обычно они работают вместе с термостатом. Поскольку тепло - одна из самых больших затрат на содержание теплицы, всегда исследуются другие источники энергии, такие как использование солнечных батарей или животных в качестве источников тепла.

В воздухе внутри теплицы действуют и другие процессы. Солнечная энергия может легко проходить через тепличное стекло, но излучение, испускаемое растениями и почвой, которые поглотили тепло, не так легко выходит наружу, помогая удерживать тепло внутри.

Это позволяет сохранять теплицу в тепле, но также может вызвать проблемы с перегревом. Чтобы растения не становились слишком горячими, необходим какой-то метод регулирования температуры. Вентиляционные отверстия, которые позволяют более легкому и горячему воздуху выходить из теплицы около крыши, а более холодному воздуху поступать ближе к уровню земли, действуют как кондиционеры. Правильная вентиляция поддерживает циркуляцию воздуха в теплице. Это помогает поддерживать стабильную температуру, а также обеспечивает циклический цикл углекислого газа (CO2), необходимого растениям для фотосинтеза [источник: Martell].Обычно в теплицах есть по крайней мере два вентиляционных отверстия: одно на крыше или рядом с ней, а другое - в нижней половине конструкции. Механические вентиляторы также могут помочь поддерживать хороший воздушный поток и регулирование температуры, автоматически открывая и закрывая вентиляционные отверстия при изменении температуры в теплице.

И, конечно же, всем растениям в теплице нужна вода. Независимо от того, используете ли вы садовый шланг, лейку или сложную автоматизированную систему с датчиками воды, вода необходима в теплице.Поскольку полив является наиболее трудоемкой работой в теплице, использование некоторых типов автоматизированных систем, таких как капиллярное матирование или капельное орошение, может сделать процесс более последовательным и надежным. Даже если подача воды непосредственно в теплицу по подземной трубе невозможна, размещение теплицы рядом с водой является практической необходимостью.

В следующем разделе мы рассмотрим различные типы теплиц и их связь с содержащимися в них растениями.

.

Выбросы парниковых газов: причины и источники

За борьбой против глобального потепления и изменения климата стоит увеличение количества парниковых газов в нашей атмосфере. Парниковый газ - это любое газообразное соединение в атмосфере, способное поглощать инфракрасное излучение, тем самым улавливая и удерживая тепло в атмосфере. Увеличивая тепло в атмосфере, парниковые газы вызывают парниковый эффект, который в конечном итоге приводит к глобальному потеплению.

Солнечная радиация и «парниковый эффект»

Глобальное потепление - не новое понятие в науке.Основы этого явления были разработаны более века назад Сванте Аррениусом в 1896 году. Его статья, опубликованная в Philosophical Magazine и Journal of Science, была первой, в которой количественно определен вклад углекислого газа в то, что ученые теперь называют «теплицей». эффект ".

Парниковый эффект возникает из-за того, что солнце бомбардирует Землю огромным количеством излучения, которое поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза. .Около 30 процентов излучения, падающего на Землю, отражается обратно в космос облаками, льдом и другими отражающими поверхностями. По данным НАСА, оставшиеся 70 процентов поглощаются океанами, землей и атмосферой.

Поглощая радиацию и нагреваясь, океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос. По данным НАСА, баланс между входящей и исходящей радиацией поддерживает общую среднюю температуру Земли на уровне 59 градусов по Фаренгейту (15 градусов по Цельсию).

Этот обмен входящей и исходящей радиацией, которая нагревает Землю, называется парниковым эффектом, потому что парниковый эффект работает примерно так же. Поступающее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу.

Как парниковые газы влияют на глобальное потепление

Газы в атмосфере, которые поглощают радиацию, известны как «парниковые газы» (иногда сокращенно ПГ), потому что они в значительной степени ответственны за парниковый эффект.Парниковый эффект, в свою очередь, является одной из основных причин глобального потепления. По данным Агентства по охране окружающей среды (EPA), наиболее важными парниковыми газами являются водяной пар (h3O), диоксид углерода (CO2), метан (Ch5) и закись азота (N2O). «Хотя кислород (O2) является вторым по распространенности газом в нашей атмосфере, O2 не поглощает тепловое инфракрасное излучение», - сказал Майкл Дейли, доцент кафедры экологических наук в колледже Ласелл в Массачусетсе.

Хотя некоторые утверждают, что глобальное потепление - это естественный процесс и что парниковые газы присутствовали всегда, количество газов в атмосфере резко возросло за последнее время.До промышленной революции содержание CO2 в атмосфере колебалось от 180 частей на миллион (частей на миллион) во время ледниковых периодов и 280 частей на миллион во время межледниковых периодов тепла. Однако после промышленной революции количество CO2 увеличивалось в 100 раз быстрее, чем при завершении последнего ледникового периода, по данным Национального управления по исследованию океана и атмосферы (NOAA).

Фторированные газы, то есть газы, к которым был добавлен элемент фтор, включая гидрофторуглероды, перфторуглероды и гексафторид серы, образуются в ходе промышленных процессов и также считаются парниковыми газами.Хотя они присутствуют в очень малых концентрациях, они очень эффективно улавливают тепло, что делает их газами с высоким «потенциалом глобального потепления» (ПГП).

Хлорфторуглероды (ХФУ), которые когда-то использовались в качестве хладагентов и аэрозольных пропеллентов, пока они не были выведены из обращения в соответствии с международным соглашением, также являются парниковыми газами.

На степень влияния парникового газа на глобальное потепление влияют три фактора:

  • Его концентрация в атмосфере.
  • Как долго он остается в атмосфере.
  • Его потенциал глобального потепления.

Углекислый газ оказывает значительное влияние на глобальное потепление, отчасти из-за его большого количества в атмосфере. По данным EPA, в 2016 году выбросы парниковых газов в США составили 6 511 миллионов метрических тонн (7 177 миллионов тонн) эквивалента углекислого газа, что равняется 81 проценту всех парниковых газов антропогенного происхождения, что на 2,5 процента меньше, чем годом ранее. Кроме того, CO2 остается в атмосфере в течение тысяч лет.

Однако, по данным EPA, метан примерно в 21 раз эффективнее поглощает излучение, чем CO2, что дает ему более высокий рейтинг GWP, хотя он остается в атмосфере всего около 10 лет.

Источники парниковых газов

Некоторые парниковые газы, такие как метан, образуются в результате сельскохозяйственных работ, включая навоз домашнего скота. Другие, такие как CO2, в основном являются результатом естественных процессов, таких как дыхание, и сжигания ископаемых видов топлива, таких как уголь, нефть и газ.

Согласно исследованию, опубликованному Университетом Дьюка, второй причиной выброса CO2 является вырубка лесов. Когда деревья убивают для производства товаров или тепла, они выделяют углерод, который обычно сохраняется для фотосинтеза.Согласно Глобальной оценке лесных ресурсов 2010 года, в результате этого процесса в атмосферу ежегодно попадает около миллиарда тонн углерода.

Лесное хозяйство и другие методы землепользования могут компенсировать некоторые из этих выбросов парниковых газов, согласно EPA.

«Пересадка помогает уменьшить накопление углекислого газа в атмосфере, поскольку растущие деревья поглощают углекислый газ посредством фотосинтеза», - сказал Дейли Live Science. «Однако леса не могут улавливать весь углекислый газ, который мы выбрасываем в атмосферу в результате сжигания ископаемого топлива, и сокращение выбросов ископаемого топлива по-прежнему необходимо, чтобы избежать накопления в атмосфере.«

Во всем мире выбросы парниковых газов являются источником серьезной озабоченности. По данным НАСА, с начала промышленной революции до 2009 года уровни CO2 в атмосфере увеличились почти на 38 процентов, а уровни метана - на колоссальные 148 процентов. , и большая часть этого увеличения пришлась на последние 50 лет. Из-за глобального потепления 2016 год был самым теплым годом за всю историю наблюдений, а 2018 год станет четвертым самым теплым годом, а 20 самых жарких лет за всю историю наблюдений пришли на период после 1998 года. , по данным Всемирной метеорологической организации.

«Наблюдаемое нами потепление влияет на атмосферную циркуляцию, которая влияет на характер осадков во всем мире», - сказал Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. «Это приведет к большим экологическим изменениям и вызовам для людей во всем мире».

Будущее нашей планеты

Если нынешние тенденции сохранятся, ученые, правительственные чиновники и растущее число граждан опасаются, что наихудшие последствия глобального потепления - экстремальные погодные условия, повышение уровня моря, вымирание растений и животных, закисление океана, серьезные изменения климата и беспрецедентные социальные потрясения - неизбежны.

В ответ на проблемы, вызванные глобальным потеплением из-за парниковых газов, правительство США в 2013 году разработало план действий по борьбе с изменением климата. А в апреле 2016 года представители 73 стран подписали Парижское соглашение, международный пакт по борьбе с изменением климата путем инвестирования в устойчивое низкоуглеродное будущее в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата (РКИК ООН). США были включены в число стран, которые согласились с соглашением в 2016 году, но начали процедуру выхода из Парижского соглашения в июне 2017 года.

Согласно EPA, выбросы парниковых газов в 2016 году были на 12 процентов ниже, чем в 2005 году, отчасти из-за значительного сокращения сжигания ископаемого топлива в результате перехода на природный газ из угля. Более теплые зимние условия в те годы также уменьшили потребность многих домов и предприятий в повышении температуры.

Исследователи во всем мире продолжают работать над поиском способов снижения выбросов парниковых газов и смягчения их последствий. По словам Дины Лич, доцента биологических и экологических наук в Университете Лонгвуд в Вирджинии, одно из возможных решений, которое изучают ученые, - это высосать углекислый газ из атмосферы и закопать его под землей на неопределенное время.

«Что мы можем сделать, так это минимизировать количество углерода, которое мы помещаем туда, и, как результат, минимизировать изменение температуры», - сказал Лич. «Однако окно действий быстро закрывается».

Дополнительные ресурсы :

Эта статья была обновлена ​​3 января 2019 г. участницей Live Science Рэйчел Росс.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.