ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Отопление теплиц солнечным коллектором


Воздушный солнечный коллектор для теплиц: вентиляция и отопление

Воздушный солнечный коллектор для теплиц обеспечивает проветривание и прогрев воздуха, используя энергию солнца. Это снижает затраты на отопление и организацию вентиляции с помощью электроэнергии.
Солнечный коллектор для теплицы создает комфортные условия для активного роста и развития растений: обеспечивает воздухообмен, заданные параметры температуры и влажности.

Как работает воздушный солнечный коллектор для теплиц?

Принцип обогрева и проветривания теплиц с помощью коллектора заключается в прогревании воздуха солнечными лучами.
Далее теплый воздух подается в помещение с помощью встроенного вентилятора. Отработанный воздух удаляется из помещения через естественные зазоры, через выходной клапан, через форточки и окна.
В теплице можно использовать как вентиляционный коллектор, так и отопительный. Выбор модели зависит от конструкции теплицы, уровня инсоляции в регионе и выращиваемых растений.

Преимущества использования солнечных коллекторов для теплицы

Солнечная энергия для отопления и проветривания теплиц давно используется в Китае и Европе. Солнечные панели устанавливаются в промышленных теплицах и небольших фермерских хозяйствах. В России использование альтернативных источников энергии только набирает популярность.
Основные причины перейти на совмещенную систему вентиляции и отопления теплиц:

  • сокращение расходов на электроэнергию или иные носители — воздушный солнечный коллектор работает автономно, только на энергии солнца;
  • доступность — солнечный свет есть там, где традиционных сетей газо- и электроснабжения;
  • безопасность — возможность короткого замыкания или возгорания отсутствует, так как нет электрической сети.

Использование солнечной энергии для отопления и проветривания теплиц доступно по всей России: от Владивостока до Краснодара. И в любое время года: воздушный солнечный коллектор в теплице прогревает воздух даже зимой.

Солнечный водонагреватель в Теплице (форум теплиц в перми)

Привет всем,

Я использую систему водяного отопления, которая работает настолько хорошо, что ее нужно использовать совместно. Он эффективен с использованием пространства, времени и энергии, и я думаю, что он имеет большой потенциал для использования в теплицах - намного лучше, чем компостные кучи или даже костры.

Я использую его в качестве основной системы водяного отопления в моем доме, и она отлично работает.

У меня есть электрический водонагреватель (у меня двухэлементный тип 220 // 240).Я заменил нижний заводской элемент на элемент на 24 В, 600 Вт и подключил две солнечные панели по 200 Вт, подключенные параллельно, чтобы они производили ток 24 В. Эти две панели были установлены на моей крыше над водонагревателем. Постоянный ток прекрасно нагревает воду.

В теплице горячая вода может проходить через землю по неглубоким трубам для мягкого отвода тепла, или пассивно термо циркулировать в другие водяные бочки и т. Д., Или прямо под грядками и т. Д.Конечно, могут быть варианты, в зависимости от тепла, необходимого для времени года (клапаны для подачи воды туда или сюда). Панели должны быть снаружи, в стороне, возможно, на земле ниже уровня окна, но как можно ближе к месту расположения бака водонагревателя, поскольку мощность постоянного тока не проходит должным образом.

Когда я впервые установил его (ранней весной этого года), панели получали меньше прямого солнечного света (из-за меньшего времени пребывания на солнце и угла наклона крыши), поэтому выделялось недостаточно тепла, поэтому я фактически сделал резервную копию системы с моей обычной (аккумуляторной) солнечной системой - неэффективное использование солнечной энергии - но я сделал это по таймеру, поэтому он работал только в часы пик.(Я мог бы сделать эту резервную систему, потому что у меня есть двухэлементный водонагреватель (220/240 В), где я подключил основную систему к верхнему, заводскому оригинальному элементу, настроенному на включение только тогда, когда вода упадет ниже 100F, и подключив мою систему постоянного тока к нижнему элементу 24 В). Но оказалось, что я могу отключить неэффективное резервное копирование примерно к марту, и у меня было много горячей воды все лето и теперь, почти до октября.

* И * С тех пор я обнаружил, что могу производить еще больше тепла от системы постоянного тока, используя элемент 24 В с меньшим сопротивлением... элемент на 24 В, 200 Вт вместо элемента на 600 Вт. Так что этой осенью, когда солнце садится, и мне нужно больше тепла, я планирую осушить мой бак и установить вместо него элемент мощностью 200 Вт и посмотреть, обеспечивает ли это достаточно горячей воды зимой без использования моей системы на основе резервной батареи. Я получил эту идею от некоторых местных солнечных парней, которые любят возиться с идеями. Они начали меня с элемента мощностью 600 Вт и с тех пор обнаружили, что 200 Вт работает даже лучше.

Я не знаю, работает ли термостат в системе постоянного тока (он подключен к работе, но не уверен, работает ли он), но на самом деле никогда не тестировал его, так как он у меня на максимальном нагреве, и я использую все горячие воды, если я заметил, что есть лишнее.Таким образом, может возникнуть опасность перегрева, если не позаботиться о нем (у меня есть клапан сброса давления с выходным отверстием). Если я выхожу из дома на несколько дней, я вытаскиваю предохранитель, который отключает солнечные батареи от моего резервуара. Но в теплице дополнительное тепло может автоматически направляться на безопасный радиатор, поэтому не нужно его контролировать.

Мой резервуар - всего лишь 30-галлонный резервуар, а я всего лишь один человек, поэтому для любой более крупной системы потребуется резервуар большего размера и / или дополнительные панели. Да, есть некоторые начальные затраты, но панели все время дешевеют, и резервуар - хорошее вложение.Для охотников за скидками можно даже использовать «сломанные» баки водонагревателя, если они не протекают. Я могу узнать, где взять элементы 24 В, если это необходимо, но, вероятно, подойдет поиск в Google.

Я надеюсь, что некоторым из вас понравится эта идея. Думаю, у него большой потенциал.

.

Обогрев теплицы от Рона Куртуса

SfC Home> Физика> Тепловая энергия>

Рона Куртуса (редакция 9 ноября 2014 г.)

A теплица - это здание, которое отапливается солнечным излучением и изолировано для предотвращения потерь от конвекции, теплопроводности и излучения, так что оно может оставаться теплым без внешнего обогрева даже в холодные дни зимы. Такая постройка используется для выращивания растений зимой.

Солнечный свет проходит через стеклянную крышу теплицы для обогрева растений и земли внутри. Предметы, нагретые солнечным светом, излучают инфракрасное излучение.

Эти объекты испускают инфракрасное излучение, которое поглощается или отражается стеклянной крышей, таким образом удерживая тепловую энергию в теплице, а не позволяя ей уйти. Это помогает сохранить тепло в здании.

Вопросы, которые могут у вас возникнуть:

  • Как стеклянная крыша влияет на солнечную радиацию?
  • Как стеклянная крыша влияет на инфракрасное излучение?
  • Как теплица остается теплой ночью?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Стекло пропускает солнечное излучение

Теплица со стеклянными стенами и стеклянной крышей. Иногда вместо стекла используют прозрачный пластик. Одна цель - обеспечить растениям свет, чтобы помочь им расти, а другая цель - сохранить тепло в теплице.

Солнечное излучение или свет Солнца проходит через стекло и нагревает растения, почву и другие предметы внутри здания. Свет почти полностью поглощается темной почвой в горшках с растениями, повышая температуру материалов.

Теплица с солнечным обогревом

Помимо пропускания световой энергии, стеклянные стены и крыша действуют как теплоизолятор, защищая внутреннюю часть от холодного воздуха и ветра снаружи теплицы.

Теплый воздух, нагретый, задерживается в здании за счет крыши и стен. Тепло не передается наружу воздухом конвекция . Стекло допускает лишь небольшую потерю тепла из-за проводимости тепла через его материал.

(Для получения дополнительной информации см. «Теплопередача».)

Стекло предотвращает утечку инфракрасного излучения

Хотя стекло, используемое для теплицы, пропускает через себя видимый свет и коротковолновое инфракрасное излучение, оно не пропускает более длинные инфракрасные волны. Это означает, что излучение не может уйти, вызывая потерю тепла.

Теплица остается теплой

Обычно тепличное стекло пропускает солнечное излучение с длинами волн от 280 до 2500 нм, поглощая инфракрасное или тепловое излучение в диапазоне от 5000 до 35000 нм.

Примечание : нм обозначает нанометр или одну 10-миллионную долю метра (10 -9 метра). В некоторых книгах длина волны обозначается в микронах. Микрон составляет одну миллионную метра (10 -6 метров). Таким образом, длина волны 2500 нм соответствует длине волны 2,5 мкм.

Инфракрасное излучение, которое не проходит сквозь стеклянные стены и крышу теплицы, поглощается материалом. Затем стекло повторно излучает инфракрасное излучение обратно на материал внутри теплицы, таким образом удерживая тепловую энергию внутри здания и поддерживая ее более высокую температуру.

(См. Инфракрасное излучение и Инфракрасное излучение, Газы и парниковый эффект для получения информации по этим вопросам.)

Земля медленно выделяет энергию

Помимо использования почвы в горшках или на земле теплицы в качестве источника хранения тепловой энергии, некоторые теплицы добавляют материалы, такие как контейнеры с водой или баки с песком и камнем, для поглощения и хранения еще большего количества этой энергии в течение дня. . Они помогают поддерживать постоянную температуру в теплице.

Поскольку нагретые материалы испускают инфракрасное излучение, теплая почва теплицы, вода, песок и другие материалы испускают это тепловое излучение с более длинными волнами, чем излучение, которое нагревает материалы. Эта энергия медленно высвобождается даже ночью.

Сводка

Теплица - это здание, которое нагревается солнечным излучением, поэтому в нем может оставаться тепло даже в холодные зимние дни. Свет от Солнца проходит через стеклянную крышу для обогрева растений и земли внутри теплицы.Эти объекты испускают инфракрасное излучение, которое поглощается стеклянной крышей. Тепловая энергия задерживается в теплице, сохраняя тепло в здании.


Будьте добры к окружающей среде


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Лучшие материалы для крыши теплицы - от WiseGeek.com

Физические ресурсы

Книги

Лучшие книги по физике тепла

Книги о теплицах с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если это так, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
heating_greenhouse.htm

Пожалуйста, включите это как ссылку на свой веб-сайт или как ссылку в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Отопление теплицы

.

Как работает солнечная тепловая энергия

Есть два типа солнечных тепловых систем: пассивные и активные. Пассивная система не требует оборудования, например, когда внутри вашей машины накапливается тепло, когда она припаркована на солнце. Активная система требует некоторого способа поглощения и сбора солнечной радиации, а затем ее сохранения.

Солнечные тепловые электростанции - это активные системы, и, хотя существует несколько типов, есть несколько основных общих черт: зеркала отражают и концентрируют солнечный свет, а приемники собирают эту солнечную энергию и преобразуют ее в тепловую энергию.Затем можно использовать генератор для производства электроэнергии из этой тепловой энергии.

Объявление

Самый распространенный тип солнечных тепловых электростанций, в том числе электростанции в пустыне Мохаве в Калифорнии, используют параболический желоб конструкции для сбора солнечного излучения. Эти коллекторы известны как системы линейных концентраторов, и самые крупные из них способны вырабатывать 80 мегаватт электроэнергии [источник: Министерство энергетики США]. Они имеют форму хаф-пайпа, который можно увидеть на сноуборде или скейтборде, и имеют линейные отражатели параболической формы, покрытые более чем

0 зеркал, выровненных с севера на юг и способных поворачиваться, чтобы следовать за солнцем, когда оно движется на восток. на запад днем.Благодаря своей форме установки этого типа могут достигать рабочих температур около 750 градусов F (400 градусов C), концентрируя солнечные лучи с интенсивностью в 30-100 раз больше их нормальной интенсивности на теплоносителях или трубах, заполненных водой / паром [источник : Управление энергетической информации]. Горячая жидкость используется для производства пара, а затем пар вращает турбину, которая приводит в действие генератор, вырабатывающий электричество.

Хотя конструкции с параболическими желобами могут работать на полной мощности как солнечные электростанции, они чаще используются в качестве гибридных источников солнечного и ископаемого топлива, добавляя возможность использования ископаемого топлива в качестве резервного.

Башенные солнечные системы - это еще один тип солнечных тепловых систем. В вышках питания используются тысячи гелиостатов , которые представляют собой большие плоские зеркала, отслеживающие солнце, для фокусировки и концентрации солнечного излучения на одном установленном на башне приемнике. Как и в параболических желобах, теплоноситель или вода / пар нагреваются в приемнике (однако силовые башни способны концентрировать солнечную энергию в 1500 раз), в конечном итоге преобразовываются в пар и используются для производства электроэнергии с помощью турбины и генератор.

Конструкции силовых башен все еще находятся в разработке, но когда-нибудь их можно будет реализовать в виде подключенных к сети электростанций, производящих около 200 мегаватт электроэнергии на одну башню.

Третья система - солнечная тарелка / двигатель . По сравнению с параболическим желобом и силовыми мачтами, тарелочные системы - это небольшие производители (от 3 до 25 киловатт). Есть два основных компонента: солнечный концентратор (тарелка) и блок преобразования энергии (двигатель / генератор).Блюдо направлено и отслеживает солнце и собирает солнечную энергию; он способен сконцентрировать эту энергию примерно в 2000 раз. Между тарелкой и двигателем находится термоприемник, представляющий собой серию трубок, заполненных охлаждающей жидкостью (например, водородом или гелием). Он поглощает концентрированную солнечную энергию от тарелки, преобразует ее в тепло и отправляет это тепло в двигатель, где оно превращается в электричество.

.

Как построить солнечную панель для воздушного отопления - видео своими руками

Как работают солнечные воздухонагреватели:

Схема солнечного воздухонагревателя © Ecohome

На приведенной выше диаграмме показана основная концепция солнечного воздухонагревателя, и, хотя существует множество конструкций, основной принцип тот же - небольшой вентилятор подает внутренний воздух в настенную панель, обращенную на юг. Воздух нагревается, проходя за черной поверхностью, а затем возвращается в кондиционированное пространство с гораздо более высокой температурой.«Бесплатное» пассивное солнечное отопление по бюджету!

Видеоролики

, посвященные солнечным воздухонагревателям своими руками, стали большим хитом на YouTube, в них есть несколько основных идей - солнечные коллекторы из переработанного мусора, солнечные коллекторы с водосточной трубой, солнечные коллекторы из экрана или листового металла. Если у вас нет возможности сделать его самостоятельно, солнечные воздухонагреватели для продажи также доступны в Интернете для покупки, немного покопавшись в Интернете.

Помимо крупных коммерческих установок, наиболее распространенным применением солнечных воздухонагревателей является дополнительное отопление отдельных помещений, например, пристройки, мастерской, гаража или любой другой небольшой хозяйственной постройки.

Причина, по которой мы говорим «дополнительный», заключается в том, что хотя в пасмурные дни можно собрать немного тепла, в основном вы будете чувствовать тепло, когда светит солнце. А без значительного количества тепловой массы для хранения и отвода тепла маловероятно, что что-либо, кроме самых хорошо изолированных зданий, будет поддерживать комфортную температуру в помещении от заката до восхода солнца холодной зимней ночью.

Если вам нужен солнечный воздухонагреватель для обогрева здания без электроэнергии, вы можете получить тепло просто за счет естественной конвекции по мере подъема теплого воздуха, но вы получите гораздо больше тепла, прогнав воздух через него с помощью вентилятора.Вентиляторы не требуют много энергии для работы, поэтому небольшая выделенная фотоэлектрическая панель будет выполнять эту работу, когда нет другой доступной мощности, и будет автоматически приводить в движение вентилятор, когда движение воздуха больше всего необходимо - когда солнце светит на панель. - и остановится ночью, когда панель остынет. Вентиляторы 12 В для охлаждения настольных компьютеров - идеальный способ создать давление в системе и заставить воздух двигаться для солнечных воздухонагревателей, установленных автономно.

Панели солнечных батарей Pop-can: Это не что иное, как гениальное, и это может быть единственной веской причиной для оправдания употребления поп-музыки.Однако это довольно трудоемкий процесс - банки необходимо очистить, сделать отверстия в дне, удалить выступы, затем их нужно склеить в стопку и, наконец, покрасить в черный цвет.

Солнечный обогреватель Pop can

Воздух вдувается в камеру в нижней части нагревательной панели и выталкивается вверх через стопки банок в верхнюю камеру, которая собирает нагретый солнцем воздух и направляет его обратно в помещение.

Солнечные коллекторы с водосточной трубой: Как бы то ни было, эта конструкция заменяет стопку банок в солнечной панели воздушного отопления на стандартные водосточные желоба карниза, окрашенные в черный матовый цвет для поглощения солнечных лучей.К нему применяются те же принципы, что и к солнечному коллектору, и, хотя вы потратите больше на материалы, вы сэкономите много труда, и он выглядит аккуратнее. Конечный результат тот же; воздух нагревается, поскольку он проходит через черные трубки, когда светит солнце.

Солнечный водонагреватель с водосточной трубой © Builditsolar

Солнечный экран или поглотитель тепла из листового металла: В найденных нами конструкциях использовалось 3 слоя экрана для обеспечения единой черной поверхности. Коллекторы экрана обычно не разделяют воздух на отдельные камеры, как в предыдущих двух конструкциях; воздух поднимается вверх по единственной камере за экраном или плоской металлической поверхностью.

Металлический гофрированный воздухонагреватель на солнечных батареях

Из этих двух, мне кажется, дизайн экрана требует немного больше усилий по сравнению с использованием листового металла (как показано выше), который можно было бы сделать с использованием старой металлической кровли и покрасить ее в матовый черный цвет. Помимо трудозатрат, тестирование между коллектором экрана и коллектором банок показало, что коллектор экрана действительно обеспечивает больше тепла, подробнее читайте здесь.

Сколько тепла могут обеспечить солнечные воздухонагреватели?

Это зависит от множества переменных:

Размер солнечной панели: Это определяет объем воздуха, который вы можете обработать, и температуру на выходе.Выбор размера для строительства или покупки будет зависеть от ваших потребностей и от того, сколько места на внешней стене вы можете выделить для панели.

Поглощение солнечного излучения: Панели могут улавливать ограниченное количество тепла в зависимости от отражающей способности черной поверхности, и вам будет лучше использовать матовую краску, чем глянцевую. Остекление само по себе мгновенно отражает около 10%, но это важно, особенно в областях, где движение воздуха создает фактор охлаждения ветром зимой, поэтому действительно лучшее, на что вы можете надеяться в общей производительности от солнечной панели для нагрева воздуха, - это поглощение около 80% доступного света.

Теплопроводность панели: Материалы с более высокой проводимостью улучшают характеристики солнечного воздухонагревателя. Например, черная труба из ПВХ не будет обеспечивать столько тепла, как черная металлическая труба. Даже разные металлы будут иметь разную проводимость. Медь - один из лучших проводников, но она очень дорога и может быть сложной задачей для получения большего диаметра или для получения краски, которой нужно придерживаться, поэтому преимущество повышенной проводимости, вероятно, не окупит дополнительных затрат.

Чтобы выбрать вариант водосточной трубы для самостоятельной сборки панели солнечного воздухонагревателя, обязательно используйте металл, а не пластик, и если он имеет глянцевую поверхность, стоит покрасить ее в черный матовый цвет.

Производительность дома: Сколько тепла нужно дому, чтобы согреться, зависит от того, сколько он теряет. Солнечный обогреватель будет обеспечивать больший процент необходимого тепла в доме, если потребность в тепле ниже, поэтому то, насколько хорошо изолирован и герметичен дом, будет решающим фактором того, насколько большим должен быть пассивный солнечный воздухонагреватель, чтобы производить разница.

Облачность: В областях с регулярной облачностью, например, на северном берегу Ванкувера в Канаде или Пескадеро в Калифорнии, покупка или строительство может не стоить затрат и хлопот. Конечно, срок окупаемости труда и денег, вложенных в одноразовую воздушную отопительную панель, будет намного дольше.

Широта: Чем дальше вы пойдете на север, тем меньше у вас будет солнечных часов в зимний день, поэтому затраты или усилия, необходимые для изготовления панели, перестанут быть целесообразными на определенной более высокой широте - хотя, если панель для сбора тепла является стеной -монтированное и дополнительное отопление может приветствоваться, тогда в северных районах оно все еще может быть целесообразным - любые читатели в северных территориях или на Аляске, которые построили или использовали солнечные панели для нагрева воздуха, могут оставить комментарий ниже!

Недостатки солнечных воздухонагревателей:

Ахиллесова пята большинства генераторов возобновляемой энергии, таких как солнечные воздухонагреватели, - это надежность, а также хранение энергии.Не всегда дует ветер и не всегда светит солнце (точнее, мы не всегда его видим). Таким образом, главный недостаток солнечных воздухонагревателей заключается в том, что вы получаете тепло только тогда, когда светит солнце.

Короткие зимние дни и непредсказуемая облачность затрудняют использование солнечных воздухонагревателей в качестве основного источника тепла, потому что вы будете получать все свое тепло в солнечные часы, но затем вам придется время от времени работать 16 часов без поступления тепла. А более короткие зимние дни означают, что они вырабатывают наименьшее количество тепла, когда оно вам больше всего нужно, хотя это можно уменьшить, установив стену на южную сторону.Во всех домах, кроме наиболее сильно изолированных в более мягком климате, с включенной тепловой массой для хранения тепла, вам, вероятно, понадобится дополнительный источник тепла, например, высокоэффективные дровяные печи или камины, или, если вы отключены от сети, древесные гранулы без электричества. плита.

Накопление солнечного тепла (тепловые батареи):

Если вы встроили в дом тепловую массу для хранения и выделения тепла, вы можете распределять накопленное тепло в течение более длительного периода времени, и для этого существует множество творческих способов.Придерживаясь темы «сделай сам», например, навесов, гаражей или теплиц, вы можете пропустить нагретый воздух через трубы, залитые песком, кирпичом, каменной кладкой и т. Д., Прежде чем выпустить его прямо в кондиционируемое пространство. Вместо того, чтобы просто нагревать воздух, плотные материалы будут поглощать часть этого тепла и медленно выделять его с течением времени после захода солнца.

Ничего не могу сказать, что вы не можете сделать это с пристройкой в ​​вашем доме, просто мы, как правило, немного более придирчивы к окончательному внешнему виду в наших домах.Таким образом, в доме может потребоваться немного более эстетичный дизайн, чем в мастерской или гараже, чтобы хранить часть тепла, генерируемого пассивной солнечной системой воздушного отопления.

В частности, теплицы, построенные в холодном климате, имеют тенденцию к перегреву днем, но иногда становятся слишком прохладными ночью для молодых растений. Имейте в виду, что важнее, чтобы корни были в тепле, чем само растение, если, конечно, воздух остается выше нуля. Если вы включите солнечный воздухонагреватель в конструкцию теплицы и передадите часть тепла платформе с тепловой массой, на которой могут разместиться ваши почвенные ящики, вы можете начать вегетационный период раньше.

Также неплохо включить в солнечную панель воздушного отопления какой-либо обходной вентиль, который может выпускать воздух летом, чтобы предотвратить перегрев, когда панель не используется активно - в качестве «варки» панели.

Вы также можете применить принципы пассивного обогрева и охлаждения, поместив панель под карнизом, где она будет полностью освещена низким зимним солнцем, но будет в тени, когда солнце находится высоко над головой и вам не нужно тепло.

Как построить солнечный воздухонагреватель своими руками:

веб-поисковиков открывает бесконечный список конструкций и методов сборки для солнечных воздухонагревателей своими руками, то же самое можно сказать и о видеороликах «сделай сам» на YouTube.Разные дизайны по-разному найдут отклик у разных людей, поэтому выберите тот, который лучше всего соответствует вашим навыкам, набору инструментов и объему внимания. Если в процессе у вас возникнут какие-либо блестящие дизайнерские идеи или модификации для пассивных солнечных воздухонагревателей, поделитесь ими в разделе комментариев ниже.

Посмотрите видео «Сделай сам» ниже, чтобы лучше понять, насколько легко построить солнечные воздушные нагревательные панели.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.