ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Полив в теплице с помощью бочки


системы со схемами и видео

Тутдача Тутдача Сад и огород Грядки Зелень Овощи Парники и теплицы Плодовые деревья Рассада Семена Удобрения Ягодные кустарники Цветы и растения Декоративные кустарники Комнатные растения Лекарственные растения Садовые цветы Заболевания Благоустройство Газон Горки Дорожки Заборы Клумбы и цветники Фигурки Садовая техника Газонокосилки Мини тракторы Пылесосы Снегоуборщики Вредители Животные Насекомые

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует примерно так же на Земле. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Так же, как и стеклянная теплица, земная теплица также полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Солнечный водонагреватель в Теплице (форум теплиц в перми)

Привет всем,

Я использую систему водяного отопления, которая работает настолько хорошо, что ее нужно использовать совместно. Он эффективен с использованием пространства, времени и энергии, и я думаю, что он имеет большой потенциал для использования в теплицах - гораздо лучше, чем компостные кучи или даже костры.

Я использую его в качестве основной системы водяного отопления в моем доме, и она отлично работает.

У меня есть водонагреватель электрический (у меня двухэлементный тип 220 // 240).Я заменил нижний заводской элемент на элемент на 24 В, 600 Вт и подключил две солнечные панели по 200 Вт, подключенные параллельно, чтобы они производили ток 24 В. Эти две панели были установлены на моей крыше над водонагревателем. Постоянный ток прекрасно нагревает воду.

В теплице горячая вода может проходить через землю по неглубоким трубам для мягкого отвода тепла, или пассивно термо циркулировать в другие водяные бочки и т. Д., Или прямо под грядками и т. Д.Конечно, могут быть варианты, в зависимости от тепла, необходимого для времени года (клапаны для подачи воды туда или сюда). Панели должны быть снаружи, в стороне, возможно, на земле ниже уровня окна, но как можно ближе к месту расположения бака водонагревателя, поскольку мощность постоянного тока не распространяется.

Когда я впервые установил его (ранней весной этого года), панели получали меньше прямого солнечного света (из-за меньшего времени пребывания на солнце и угла наклона крыши), поэтому выделялось недостаточно тепла, поэтому я фактически сделал резервную копию системы с моей обычной (аккумуляторной) солнечной системой - неэффективное использование солнечной энергии - но я сделал это по таймеру, поэтому он работал только в часы пик.(Я мог бы сделать эту резервную систему, потому что у меня есть двухэлементный водонагреватель (220/240 В), где я подключил основную систему к верхнему, заводскому оригинальному элементу, настроенному на включение только тогда, когда вода упадет ниже 100F, и подключив мою систему постоянного тока к нижнему элементу 24 В). Но оказалось, что я могу отключить неэффективное резервное копирование примерно к марту, и у меня было много горячей воды все лето и теперь, почти до октября.

* И * С тех пор я обнаружил, что могу производить еще больше тепла от системы постоянного тока, используя элемент 24 В с меньшим сопротивлением... элемент на 24 В, 200 Вт вместо элемента на 600 Вт. Так что этой осенью, когда солнце садится, и мне нужно больше тепла, я планирую осушить мой бак и установить вместо него элемент мощностью 200 Вт и посмотреть, обеспечивает ли это достаточно горячей воды зимой без использования моей системы на основе резервной батареи. Я получил эту идею от некоторых местных солнечных парней, которые любят возиться с идеями. Они начали меня с элемента мощностью 600 Вт и с тех пор обнаружили, что 200 Вт работает даже лучше.

Я не знаю, работает ли термостат в системе постоянного тока (он подключен к работе, но не уверен, работает ли он), но на самом деле никогда не тестировал его, так как он у меня на максимальном нагреве, и я использую все горячие воды, если я заметил, что есть лишнее.Таким образом, может возникнуть опасность перегрева, если не позаботиться о нем (у меня есть клапан сброса давления с выходным отверстием). Если я выхожу из дома на несколько дней, я вытаскиваю предохранитель, который отключает солнечные батареи от моего резервуара. Но в теплице дополнительное тепло может автоматически направляться на безопасный радиатор, поэтому нет необходимости контролировать его.

Мой бак всего на 30 галлонов, а я всего лишь один человек, поэтому для любой более крупной системы потребуется бак большего размера и / или дополнительные панели. Да, есть некоторая начальная стоимость, но панели все время дешевеют, и резервуар - хорошее вложение.Для охотников за скидками возможно даже использование «сломанных» баков водонагревателя, если они не протекают. Я могу узнать, где взять элементы 24 В, если нужно, но, вероятно, подойдет поиск в Google.

Я надеюсь, что некоторым из вас понравится эта идея. Думаю, у него большой потенциал.

.

Содержание двуокиси углерода в атмосфере находится на рекордно высоком уровне. Вот что вам нужно знать.

Удерживая тепло от солнца, парниковые газы сохраняют климат Земли пригодным для жизни людей и миллионов других видов. Но сейчас эти газы вышли из равновесия и угрожают кардинально изменить, какие живые существа могут выжить на этой планете и где.

Атмосферные уровни двуокиси углерода - наиболее опасного и распространенного парникового газа - находятся на самом высоком уровне, когда-либо зарегистрированном.Уровни парниковых газов настолько высоки в первую очередь потому, что люди выбрасывают их в воздух, сжигая ископаемое топливо. Газы поглощают солнечную энергию и удерживают тепло близко к поверхности Земли, не позволяя ему улетучиваться в космос. Это удержание тепла известно как парниковый эффект.

Корни концепции парникового эффекта уходят в XIX век, когда французский математик Жозеф Фурье в 1824 году вычислил, что Земля была бы намного холоднее, если бы на ней не было атмосферы. В 1896 году шведский ученый Сванте Аррениус первым связал повышение концентрации углекислого газа в результате сжигания ископаемого топлива с эффектом потепления.Почти столетие спустя американский ученый-климатолог Джеймс Э. Хансен засвидетельствовал Конгрессу, что «парниковый эффект был обнаружен и теперь меняет наш климат».

Сегодня «изменение климата» - это термин, который ученые используют для описания сложных сдвигов, вызванных концентрацией парниковых газов, которые в настоящее время влияют на погодные и климатические системы нашей планеты. Изменение климата включает в себя не только повышение средних температур, которое мы называем глобальным потеплением, но и экстремальные погодные явления, изменение популяций и мест обитания диких животных, повышение уровня моря и ряд других воздействий.

Климат 101: причины и следствия Климат, безусловно, меняется. Но что вызывает это изменение? И как повышение температуры влияет на окружающую среду и нашу жизнь?

Правительства и организации по всему миру, такие как Межправительственная группа экспертов по изменению климата (МГЭИК), орган Организации Объединенных Наций, который отслеживает последние научные данные об изменении климата, измеряет парниковые газы, отслеживает их воздействие и внедряет решения.

Основные парниковые газы и источники

Двуокись углерода (CO 2 ): Двуокись углерода является основным парниковым газом, на который приходится около трех четвертей выбросов. Он может оставаться в атмосфере на тысячи лет. В 2018 году уровень углекислого газа достиг 411 частей на миллион в Гавайской обсерватории базового уровня атмосферы Мауна-Лоа, что стало самым высоким среднемесячным показателем за всю историю наблюдений. Выбросы углекислого газа в основном происходят от сжигания органических материалов: угля, нефти, газа, древесины и твердых отходов.

Метан (CH 4 ): Основной компонент природного газа, метан, выбрасывается со свалок, газовой и нефтяной промышленности и сельского хозяйства (особенно из пищеварительной системы пастбищных животных). Молекула метана не остается в атмосфере столько же, сколько молекула углекислого газа - около 12 лет, - но она по крайней мере в 84 раза мощнее за два десятилетия. На его долю приходится около 16 процентов всех выбросов парниковых газов.

Закись азота (N 2 O): Закись азота занимает относительно небольшую долю глобальных выбросов парниковых газов - около шести процентов, но она в 264 раза мощнее углекислого газа в течение 20 лет, и время ее существования в атмосфере превышает столетие, согласно IPCC.Сельское хозяйство и животноводство, включая удобрения, навоз и сжигание сельскохозяйственных остатков, а также сжигание топлива, являются крупнейшими источниками выбросов закиси азота.

Промышленные газы: Фторированные газы, такие как гидрофторуглероды, перфторуглероды, хлорфторуглероды, гексафторид серы (SF 6 ) и трифторид азота (NF 3 ), имеют потенциал улавливания тепла в тысячи раз больше, чем CO 2 и остаются в атмосфере от сотен до тысяч лет.На их долю приходится около 2 процентов всех выбросов, они используются в качестве хладагентов, растворителей и в производстве, иногда являясь побочными продуктами.

Другие парниковые газы включают водяной пар и озон (O 3 ). Водяной пар на самом деле является самым распространенным парниковым газом в мире, но он не отслеживается так же, как другие парниковые газы, потому что он не испускается напрямую в результате деятельности человека, и его последствия недостаточно изучены. Точно так же приземный или тропосферный озон (не путать с защитным стратосферным озоновым слоем выше) не испускается напрямую, а возникает в результате сложных реакций между загрязнителями в воздухе.

Воздействие парниковых газов

Парниковые газы имеют далеко идущие последствия для окружающей среды и здоровья. Они вызывают изменение климата, задерживая тепло, а также способствуют респираторным заболеваниям из-за смога и загрязнения воздуха. Экстремальные погодные условия, перебои в снабжении продовольствием и учащение лесных пожаров - другие последствия климата

.

парниковых газов | Определение, выбросы и парниковый эффект

Двуокись углерода (CO 2 ) является наиболее значительным парниковым газом. Естественные источники атмосферного CO 2 включают выделение газов из вулканов, горение и естественный распад органических веществ, а также дыхание аэробными (потребляющими кислород) организмами. Эти источники уравновешиваются, в среднем, набором физических, химических или биологических процессов, называемых «стоками», которые имеют тенденцию удалять CO 2 из атмосферы.Значительные естественные поглотители включают наземную растительность, которая поглощает CO 2 во время фотосинтеза.

Ряд океанических процессов также действуют как поглотители углерода. Один из таких процессов, «насос растворимости», включает спуск с поверхности морской воды, содержащей растворенный CO 2 . Другой процесс, «биологический насос», включает поглощение растворенного CO 2 морской растительностью и фитопланктоном (маленькими, свободно плавающими фотосинтезирующими организмами), живущими в верхних слоях океана, или другими морскими организмами, которые используют CO 2 для строить скелеты и другие конструкции из карбоната кальция (CaCO 3 ).Когда эти организмы истекают и падают на дно океана, их углерод транспортируется вниз и в конечном итоге закапывается на глубине. Долгосрочный баланс между этими естественными источниками и стоками приводит к фоновому, или естественному, уровню CO 2 в атмосфере.

Напротив, деятельность человека увеличивает уровни CO 2 в атмосфере, в первую очередь, за счет сжигания ископаемого топлива (в основном нефти и угля и, во вторую очередь, природного газа для использования в транспорте, отоплении и производстве электроэнергии) и за счет производства цемента.Другие антропогенные источники включают выжигание лесов и расчистку земель. В настоящее время антропогенные выбросы составляют около 7 гигатонн (7 миллиардов тонн) углерода в атмосферу в год. Антропогенные выбросы равны примерно 3 процентам от общих выбросов CO 2 из естественных источников, и эта усиленная углеродная нагрузка в результате деятельности человека намного превышает компенсирующую способность естественных поглотителей (возможно, на 2–3 гигатонны в год) .

вырубка леса Тлеющие остатки участка обезлесенной земли в тропических лесах Амазонки в Бразилии.По оценкам, на чистую глобальную вырубку лесов ежегодно приходится около двух гигатонн выбросов углерода в атмосферу. © Brasil2 / iStock.com

CO 2 соответственно накапливался в атмосфере со средней скоростью 1,4 частей на миллион (ppm) по объему в год в период с 1959 по 2006 год и примерно 2,0 ppm в год в период с 2006 по 2018 год. В целом, эта скорость накопления была линейный (то есть однородный во времени). Однако некоторые нынешние поглотители, такие как океаны, могут стать источниками в будущем.Это может привести к ситуации, когда концентрация CO 2 в атмосфере растет с экспоненциальной скоростью (то есть со скоростью увеличения, которая также увеличивается с течением времени).

Кривая Килинга Кривая Килинга, названная в честь американского климатолога Чарльза Дэвида Килинга, отслеживает изменения концентрации углекислого газа (CO 2 ) в атмосфере Земли на исследовательской станции на Мауна-Лоа на Гавайях. Хотя эти концентрации испытывают небольшие сезонные колебания, общая тенденция показывает, что CO 2 увеличивается в атмосфере. Encyclopdia Britannica, Inc.

Естественный фоновый уровень углекислого газа колеблется во временных масштабах в миллионы лет из-за медленных изменений в дегазации в результате вулканической активности. Например, примерно 100 миллионов лет назад, в меловой период, концентрации CO 2 были в несколько раз выше, чем сегодня (возможно, около 2000 ppm). За последние 700000 лет концентрации CO 2 менялись в гораздо меньшем диапазоне (примерно от 180 до 300 ppm) в связи с теми же эффектами земной орбиты, связанными с наступлением и уходом ледниковых периодов эпохи плейстоцена.К началу 21 века уровни CO 2 достигли 384 частей на миллион, что примерно на 37 процентов выше естественного фонового уровня примерно 280 частей на миллион, существовавшего в начале промышленной революции. Уровни атмосферного CO 2 продолжали расти и к 2018 году достигли 410 частей на миллион. Согласно измерениям керна льда, такие уровни считаются самыми высокими по крайней мере за 800 000 лет и, согласно другим свидетельствам, могут быть самыми высокими по крайней мере за 5 000 000 лет.

Радиационное воздействие, вызванное двуокисью углерода, изменяется примерно логарифмически в зависимости от концентрации этого газа в атмосфере. Логарифмическое соотношение возникает в результате эффекта насыщения, при котором по мере увеличения концентрации CO 2 становится все труднее дополнительным молекулам CO 2 влиять на «инфракрасное окно» (определенная узкая полоса длин волн в инфракрасном диапазоне). область, не поглощаемая атмосферными газами).Логарифмическое соотношение предсказывает, что потенциал потепления поверхности повысится примерно на ту же величину при каждом удвоении концентрации CO 2 . При нынешних темпах использования ископаемого топлива ожидается, что к середине XXI века концентрации CO 2 увеличатся вдвое по сравнению с доиндустриальными уровнями (когда концентрации CO 2 , по прогнозам, достигнут 560 ppm). Удвоение концентрации CO 2 будет означать увеличение радиационного воздействия примерно на 4 Вт на квадратный метр.Учитывая типичные оценки «чувствительности климата» при отсутствии каких-либо компенсирующих факторов, это увеличение энергии приведет к потеплению на 2–5 ° C (от 3,6 до 9 ° F) по сравнению с доиндустриальными временами. Общее радиационное воздействие за счет антропогенных выбросов CO 2 с начала индустриальной эпохи составляет примерно 1,66 Вт на квадратный метр.

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.