ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Сколько надо профильной трубы на теплицу 6х3


Расчет теплицы из поликорбоната и профильной трубы: калькулятор

Строительство теплицы своими руками – вполне посильная задача, с которой смогут справиться даже люди с минимальными навыками в строительстве. Однако, чтобы сооружение получилось технологически правильным и симметричным, еще до начала его возведения необходимо провести некоторые расчеты.

Подсчет количества нужного материала и расчет размеров будущей постройки – достаточно сложный процесс, требующий предельной внимательности. От этого будет зависеть надежность постройки и ее удобство для использования. В этой статье мы рассмотрим основные расчеты, которые необходимо провести перед строительством арочных и купольных теплиц из различных материалов.

Расчет теплицы

У некоторых дачников возникает вопрос, зачем вообще нужно проводить расчет теплицы, ведь достаточно просто построить основание необходимой формы и размера, установить опоры и покрыть сооружение пленкой или поликарбонатом.

На самом деле, правильно проведенный расчет – залог успешного строительства. От этого будет зависеть не только надежность готовой конструкции, но и финансовая сторона вопроса. При правильно проведенном расчете вы сможете точно узнать, какой материал для возведения вам понадобится, и сколько его следует купить.

В интернете есть множество сервисов, предоставляющих онлайн-подсчет всех необходимых материалов. Такие онлайн-калькуляторы действительно очень удобны и экономят много сил и энергии тем, кто не уверен в собственных математических знаниях. Однако, для полной уверенности в правильности подсчета, полученные данные лучше проверить, проведя расчет вручную. Далее мы расскажем, как это правильно делать.

Расчет материала для теплиц

В первую очередь расчет понадобится для того, чтобы точно подсчитать необходимое количество материала для строительства. Этот процесс включает подсчет материалов для возведения фундамента, установки опор и монтажа покрытия.

Подсчет напрямую зависит от того, какие материалы вы планируете использовать для строительства. К примеру, для возведения опор часто используют деревянные брусья, но более практичным и финансово выгодным материалом считается профильная труба. Она недорогая, но достаточно прочная и долговечная. Кроме того, материал самой трубы практически не поддается воздействию грибков и плесени, поэтому каркасу постройки понадобится минимум ухода.

Также расчет должен включать кровельный материал: пленку, стекло или поликарбонат. Мы рассмотрим расчет последнего вида кровельного материала, так как именно поликарбонат считается самым надежным и современным вариантом тепличного покрытия.

Теплица из профильной трубы

Профильная труба – это изделие из металла квадратного, прямоугольного или овального сечения. Самыми недорогими считаются трубы из необработанного металла, но для влажной среды больше подходит оцинкованная или окрашенная труба. Однако, если вы планируете соединять элементы конструкции методом сварки, лучше покупать трубы без покрытия, так как под воздействие тепла сварки защитный слой в любом случае разрушится, и трубу придется заново окрашивать.

Примечание: Как правило, для строительства конструкций закрытого грунта используются трубы квадратного или прямоугольного сечения, размером 20 х 20 или 20 х 40 мм.

Если вы будете соединять опоры болтами или другой крепежной фурнитурой, можете смело покупать оцинкованную трубу. Однако преимущество следует отдавать максимально качественным изделиям, оцинковка у которых не потрескается со временем. При повреждении защитного слоя все свойства таких оцинкованных труб теряются, и каркас начнет покрываться ржавчиной во влажной тепличной среде.

Рисунок 1. Чертежи каркаса двухскатной и арочной теплицы из профильной трубы

Перед началом расчета теплицы из профильной трубы следует определиться с типом конструкции. Традиционным вариантом считается «домик» - постройка с двухскатной крышей, но более современными считаются арочные и купольные конструкции. Их преимущество в том, что на крыше не скапливается снег, который может повредить покрытие, а внутри остается достаточно пространства для ухода за растениями (рисунок 1).

Примечание: Вне зависимости от выбранного типа конструкции, высоту здания лучше делать сразу немного больше высоты человеческого роста. Более низкая конструкция, конечно, сэкономит вам немного денег, но работать в полусогнутом состоянии в ней будет не слишком удобно.

Приведем примеры расчета для самых популярных типов теплиц – двухскатной и арочной:

  1. Арочная: обычно имеет в высоту порядка 1900-2400 мм. Исходя из этого можно сделать вывод, что арка – это половина полного круга. Соответственно, нам нужно рассчитать длину окружности по формуле L=п*D. Число п (Пи) – это постоянная величина, которая равняется 3,14, а D (диаметр) равен двум радиусам. В нашем случае высота конструкции и является радиусом. Предположим, что высота здания будет составлять два метра. Соответственно, длина окружности L будет равна 3,14*4, или 12,56 м. Этот показатель нужно поделить пополам. Получится показатель 6,28 м, который и будет соответствовать длине изогнутой арки. В данном случае есть только одна проблема: стандартная длина профильной трубы составляет 6 метров, соответственно к ней придется каким-то образом прикрепить небольшой кусочек. Чтобы упростить себе задачу, лучше делать высоту порядка 1850-1900 мм. В таком случае длина одной изогнутой арки будет составлять как раз 6 метров.
  2. Двухскатная: более сложная в расчетах. В первую очередь необходимо учесть угол наклона крыши, который колеблется в зависимости от снеговой и ветровой нагрузки. Стандартным считается показатель 30-45 градусов, а оптимальная высота постройки с двухскатной крышей – 170-200 см. Чтобы узнать высоту крыши, нужно воспользоваться теоремой Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов катетов. Предположим, что ширина нашей теплицы будет 2 метра, а угол наклона крыши – 30 градусов. В данном случае гипотенузой будет считаться длина ската, а катеты – это показатель ширины постройки. Пользуясь все той же теоремой Пифагора, узнаем, что катет, лежащий напротив угла в 30 градусов, должен равняться половине гипотенузы. Составив квадратное уравнение, получится, что длина гипотенузы равна 1,154 м, соответственно длина катета – 0,58 м. Приняв в расчет, что высота стенки равна двум метрам, можно сделать вывод, что высота этой же конструкции по коньку равняется 2,58 метра.

Пользуясь этими расчетами, вы сможете рассчитать необходимое количество опор и арок. При этом нужно обязательно делать запас, так как дополнительно в каждой теплице есть двери и форточки, которые также делают из профильной трубы.

Теплица из поликарбоната

Поликарбонат – это кровельный материал, который пропускает внутрь достаточно света для нормального развития растения, но при этом обладает повышенной прочностью. Именно поэтому его чаще всего используют вместо хрупкого стекла или недолговечной пленки.

Рисунок 2. Чертежи построек из поликарбоната

Как и в случае с профильной трубой для строительства каркаса, необходимо провести расчет количества листов поликарбоната, необходимых для покрытия каркаса (рисунок 2). В первую очередь следует принимать во внимание толщину листов. Этот показатель зависит от сезона использования постройки. Если вы планируете проводить в ней работы в теплое время года, то есть с весны по осень, будет достаточно листов, толщиной 5-10 мм. Если же вы планируете построить круглогодичную отапливаемую теплицу, лучше отдавать предпочтение листам, толщиной минимум 15 мм.

Есть ряд факторов, которые обязательно следует учитывать при проведении расчетов:

  1. Размер листов: нужно заранее составить чертеж будущей постройки и спланировать раскрой кровельного материала, чтобы количество отходов было минимальным.
  2. Свойства поликарбоната: под действием тепла этот материал имеет свойство расширяться. Эту особенность нужно обязательно учитывать при расчете количества листов и их раскрое.
  3. Возможность изгиба: несмотря на то, что поликарбонат легко гнется, некоторым моделям материала достаточно сложно придать необходимую форму. Поэтому при покупке обязательно интересуйте, можно ли согнуть лист. Это требования играет ключевую роль при покрытии арочных и купольных моделей.

Также следует учитывать, что для крепления поликарбоната понадобится специальная фурнитура: торцевые профили, перфирированные ленты и специальные саморезы.

Расчет необходимого количества поликарбоната для покрытия достаточно простой. Стандартная ширина листа составляет 2,1 метра. При этом ребра жесткости располагаются вдоль листа, а при монтаже его край должен фиксироваться на опорах из металлического профиля. Кроме того, нужно помнить, что стандартное расстояние между опорными стойками составляет 0,7 или 1,05 метра, а листы крепятся встык с помощью специальных соединительных планок и саморезов с термошайбами. Зная ширину листа и количество стоек в вашей постройке, вы сможете с легкостью рассчитать необходимое количество кровельного материала.

Расчет дуги

Данный тип расчета понадобится вам в том случае, если вы планируете возвести теплицу арочного типа (рисунок 3).

Примечание: Ключевую роль при проведении расчетов играет общая высота постройки и стандартный размер листов поликарбоната.

Стандартный лист поликарбоната имеет ширину 2,1 метра и длину 6 метров. Соответственно, именно длина будет выступать решающим фактором при определении высоты постройки.

Рисунок 3. Пример расчета дуги

Для того, чтобы придать листу дугообразную форму, его укладывают поперек каркаса. В данном случае ширина всей конструкции будет составлять порядка 3,80 метра, а радиус полукруга – 1,90 метра. Если ориентироваться на геометрические формулы и расчеты, приведенные в предыдущих разделах, можно сделать вывод, что высота постройки будет равняться радиусу, то есть будет составлять 1,90 метра. К сожалению, такая высота теплицы подходит далеко не всем, поэтому для увеличения высоты рекомендуется обустраивать для постройки цоколь.

Расчет размеров теплицы разных типов

Существует несколько типов теплиц, которые пользуются особенно высоким спросом. Первой считается арочная конструкция, которую легко возвести своими руками. Кроме того, в такой конструкции легко работать, а благодаря конструктивным особенностям постройки внутри оптимально распределяются свет и тепло и растения развиваются более равномерно.

Вторым популярным типом теплицы считается купольная. Это сравнительно новый вид постройки, но благодаря своему необычному виду она пользуется широкой популярностью у тех, кто не только хочет своими руками выращивать овощи, ягоды и зелень, но и сделать такую постройку оригинальным украшением участка.

Купольная

Купольную теплицу также называют геокуполом. Это постройка, которая внешне напоминает большую полусферу. Для ее постройки понадобится много треугольных и шестиугольных элементов каркаса, которые соединяются между собой (рисунок 4).

Примечание: Для покрытия купольной постройки можно использовать практически любой материал. Недорогой вариант конструкции – из дерева и пленки, а более современным, прочным и надежным считается вариант из профильной трубы и поликарбоната.

Поскольку купольная теплица существенно отличается от других конструкций закрытого грунта, ее расчет также следует проводить с учетом подобных особенностей.

В первую очередь вам понадобятся определенные материалы для строительства. Каркас можно сделать из профильной трубы или деревянных брусьев, а в качестве покрытия использовать любой доступный материал (стекло, пленку или поликарбонат). Также вам понадобятся специальные лепестковые коннекторы, которые соединяют треугольные элементы каркаса между собой, и фурнитура (саморезы, гайки, болты, навесы и ручки), которая пондобится для крепления кровельного материала и изготовления дверей и форточек.

Рисунок 4. Чертежи и расчеты, необходимые для строительства купольной теплицы

Основной расчет, который понадобится при строительстве купольной модели – это определение площади сферического купола. К счастью, в интернете есть специальные геодезические онлайн-калькуляторы, которые помогут не только рассчитать объем купола, но и количество необходимых элементов каркаса для его строительства. Вам достаточно просто ввести желаемый диаметр и высоту постройки, и система автоматически подсчитает все нужные данные. К примеру, если диаметр теплицы составляет 4 метра, а высота 2 метра, вам понадобится 35 и 30 треугольников с длиной ребра 1,23 и 1,09 метра соответственно.

Расчет можно провести и вручную, воспользовавшись формулой S=2П*r2, причем идеальной считается теплица, в которой высота составляет половину диаметра.

Арочная

Арочная конструкция считается самой простой и удобной, а построить ее смогут даже новички с минимальными знаниями в строительном деле. Главное – правильно рассчитать длину дуги, высоту и ширину постройки (рисунок 5).

Для определения ширины в первую очередь определитесь, какое количество грядок будет в ней находиться. Оптимальной считается ширина в 1 метр, а проходы между грядками должны составлять порядка 50 см.

Рисунок 5. Пример расчета материалов для арочной теплицы

Чтобы упростить процесс расчетов, предположим, что мы будем возводить небольшую теплицу, шириной всего в 1 метр. В данном случае ширина конструкции равняется диаметру половины дуги, а высота постройки будет равняться радиусу. В формульном виде это будет выглядеть так: R=D/2=1м/2=0,5 м. Далее нужно высчитать длину дуги, которая составляет половину полной окружности с диаметром в 1 метр. Подобный расчет проводится по формуле: L=0.5x*пD=1,57 м.

Расчет освещения теплицы

Кроме непосредственного строительства теплицы, определенные расчеты требуются и при ее внутреннем обустройстве. Поскольку ключевую роль в выращивании растений в открытом грунте играет свет и тепло, мы рассмотрим, как правильно рассчитать освещение и отопление конструкций закрытого грунта.

Важность расчета освещения объясняется тем, что растениям требуется определенное количество света для полноценного развития. Если свет будет слишком тусклым, культуры просто не будут расти, а если слишком ярким – могут сгореть.

При проведении расчета освещения ориентируются на площадь помещения и мощность ламп, которые используются для подсветки. К примеру, лампа с мощностью 150 Вт способна осветить площадь 60*60 см, что отлично подходит для небольших домашних теплиц. В промышленных конструкциях, как правило, используют лампы мощностью 1000 Вт, так как они способны освещать участок 250*250 см. Расчеты, необходимые для монтажа освещения теплицы, приведены в таблице 1.

Таблица 1. Расчет мощности осветительных приборов для подсветки конструкций закрытого грунта

Зная площадь теплицы, вы сможете рассчитать необходимое количество ламп определенной мощности. При этом в небольших постройках не рекомендуют использовать слишком мощные осветительные приборы, так как от них растения могут сгореть. Кроме того, следует учитывать, что лампы должны находиться на определенном расстоянии от растений, и чем выше мощность лампы, тем большим должно быть расстояние. Поэтому в домашних теплицах не рекомендуется использовать мощные лампы, от которых растения могут просто сгореть, а определять оптимальное расстояние от лампы до грядок нужно постепенно: сначала подвесить осветительные приборы на максимальную высоту, а при обнаружении признаков недостатков света расстояние можно сократить.

Расчет отопления теплицы

Правильное отопление теплицы играет важную роль при круглогодичном выращивании растений. Способов обогрева теплицы существует достаточно много: паровое, водное, электрическое и инфракрасное. В большинстве случаев обогрев подразумевает установку определенного количества радиаторов. Именно для определения их количества и понадобятся расчеты.

В целом, можно сказать, что система обогрева должна обладать определенной мощностью, которая будет не только обеспечивать растения необходимым количеством тепла, но и компенсировать теплопотери.

Примечание: Общий уровень тепловой мощности состоит из суммированной мощности отдельных радиаторов.

Для подсчета необходимого количества отопительных приборов следует учитывать такие факторы:

  1. Площадь остекления постройки: чем меньше этот показатель, тем меньшее количество тепла будет теряться при обогреве.
  2. Соотношение температур внутри и снаружи: чем больше разница температур, тем выше потери тепла. Этот показатель особенно важен при зимнем обогреве.
  3. Уровень теплопроводности: этот показатель зависит от материала покрытия. Чем ниже его теплопроводность, тем медленнее тепло будет выходить наружу.
  4. Герметичность конструкции: если в постройке есть щели, через которые холодный воздух может проникать внутрь, будет теряться больше тепла.

Приняв в расчет все эти показатели, и умножив их, можно получить требуемую мощность одного радиатора, а в зависимости от общей площади теплицы – рассчитать необходимое количество отопительных приборов.

Более детально необходимые расчеты и их применение на практике показаны в видео.

Новая теплица с накопителем тепла; система теплообмена воздух-вода (форум теплиц в Перми)

Хороший дизайн Дэн, я могу сказать, что вы инженер-механик. Мне нравится идея хранить тепло в воде и прятать его под землей. Я просто выскажу некоторые мысли в произвольном порядке ...

Если вы стремитесь к максимальному зимнему освещению, я думаю, что угол остекления может быть немного плоским (если вы не говорите 55 градусов от горизонтали). Вы примерно на 40 градусах северной широты, поэтому солнце равноденствия будет на 50 градусах, а солнце зимнего солнцестояния будет примерно на 27 градусах от горизонтали.Пожалуйста, дважды проверьте меня, потому что я немного исхожу из памяти. Я считаю, что многие люди стремятся примерно на 15 градусов по вертикали от солнечного угла равноденствия (для вас 35 градусов от вертикали). Таким образом, вы будете оптимально ловить солнце с ноября по январь, а не только с 21 декабря. Если ваше описание означало 55 от горизонтали, вам было бы хорошо идти. 55 от вертикали, вероятно, даст вам много солнца летом и меньше зимой, что может быть противоположным тому, что вы хотите.

Я слышал, что поддержание тепла в почве зимой приносит растениям больше пользы, чем воздух.Теплые резервуары под кроватями должны помочь. Возможно, вы захотите оставить доступ для прокладки линий горячей воды для теплообменника через почву в местах, не над резервуарами, чтобы они также получали немного тепла.

Я ничего не знаю о гидропонике, но вы можете использовать почвенное ложе в своих интересах, не наклоняя дно. Если бы вы сделали его плоским и запечатали, чтобы удерживать воду, растения могли бы набирать воду со дна почвы. Вам понадобится слив на дюйм или два от дна, чтобы он не промок.А поскольку я ничего не знаю, не делайте того, что я говорю. Но это может быть способ упростить полив или сделать его более автоматическим, когда растения пустят корни.

Как вы предотвратите раздавливание крышек резервуаров грязью? Было бы отстойно все это построить, засыпать грязью, а затем над резервуарами образовалось бы углубление.

Это далеко идущая идея, но поскольку вы инженер, я полагаю, вы справитесь с этим. Сделайте один из резервуаров батареей с фазовым переходом, используя глицерин.Прежде чем вы больше не сможете добраться до него, намотайте в резервуар целую связку pex или ирригационной линии, чтобы вы могли пропустить воду через нее и до теплообменника. Затем заполните емкость глицерином. Фаза изменяется на 65 градусов, что требует много энергии. Поэтому, когда тепло, вы пропускаете воду по спиральным трубам, чтобы расплавить глицерин. Затем, когда становится холодно, вы пропускаете холодную воду из комнаты через глицерин, чтобы нагреть ее.

Если вы можете поддерживать температуру выше 50 градусов, вы можете выращивать там цитрусовые...

Если вы устанавливаете пароизоляцию (что, я думаю, рекомендуется), я бы поместил ее с внутренней стороны osb, чтобы osb не заплесневел или не повредился водой.

Я не слежу за анкерными стойками. Разве существующих фальш-балок не хватает фундамента?

Некоторое стекло имеет низкоэмиссионное покрытие или другие вещи, которые могут помочь или повредить вам, в зависимости от того, какой стороной вы обращены. Если вы сможете выяснить, что у вас есть, и если это имеет значение, это может быть полезно.

Возможно, вам понадобится проход для доступа ко всем вашим растениям. Возможно, включите это с доступом к резервуарам, чтобы у вас была функция сложения (доступ, проход, погоня за водопроводом и т. Д.). К тому же это место для меньшего количества грязи. О, как только вы пройдете мимо резервуаров, сделайте из него камеру для червяков.

Удачи, похоже веселый проект!

.

Выбросы парниковых газов: причины и источники

За борьбой против глобального потепления и изменения климата стоит увеличение количества парниковых газов в нашей атмосфере. Парниковый газ - это любое газообразное соединение в атмосфере, способное поглощать инфракрасное излучение, тем самым улавливая и удерживая тепло в атмосфере. Увеличивая тепло в атмосфере, парниковые газы вызывают парниковый эффект, который в конечном итоге приводит к глобальному потеплению.

Солнечная радиация и «парниковый эффект»

Глобальное потепление - не новое понятие в науке.Основы этого явления были разработаны более века назад Сванте Аррениусом в 1896 году. Его статья, опубликованная в Philosophical Magazine и Journal of Science, была первой, в которой количественно определен вклад углекислого газа в то, что ученые теперь называют «теплицей». эффект ".

Парниковый эффект возникает из-за того, что солнце бомбардирует Землю огромным количеством излучения, которое поражает атмосферу Земли в виде видимого света, а также ультрафиолетового (УФ), инфракрасного (ИК) и других типов излучения, невидимых для человеческого глаза. .Около 30 процентов излучения, падающего на Землю, отражается обратно в космос облаками, льдом и другими отражающими поверхностями. По данным НАСА, оставшиеся 70 процентов поглощаются океанами, землей и атмосферой.

Поглощая радиацию и нагреваясь, океаны, суша и атмосфера выделяют тепло в виде теплового инфракрасного излучения, которое выходит из атмосферы в космос. По данным НАСА, баланс между входящей и исходящей радиацией поддерживает общую среднюю температуру Земли на уровне 59 градусов по Фаренгейту (15 градусов по Цельсию).

Этот обмен входящей и исходящей радиацией, которая нагревает Землю, называется парниковым эффектом, потому что парниковый эффект работает примерно так же. Поступающее УФ-излучение легко проходит через стеклянные стены теплицы и поглощается растениями и твердыми поверхностями внутри. Однако более слабое ИК-излучение с трудом проходит через стеклянные стены и задерживается внутри, нагревая теплицу.

Как парниковые газы влияют на глобальное потепление

Газы в атмосфере, которые поглощают радиацию, известны как «парниковые газы» (иногда сокращенно ПГ), потому что они в значительной степени ответственны за парниковый эффект.Парниковый эффект, в свою очередь, является одной из основных причин глобального потепления. По данным Агентства по охране окружающей среды (EPA), наиболее важными парниковыми газами являются водяной пар (h3O), диоксид углерода (CO2), метан (Ch5) и закись азота (N2O). «Хотя кислород (O2) является вторым по распространенности газом в нашей атмосфере, O2 не поглощает тепловое инфракрасное излучение», - сказал Майкл Дейли, доцент кафедры экологических наук в колледже Ласелл в Массачусетсе.

Хотя некоторые утверждают, что глобальное потепление - это естественный процесс и что парниковые газы присутствовали всегда, количество газов в атмосфере резко возросло за последнее время.До промышленной революции содержание CO2 в атмосфере колебалось от 180 частей на миллион (частей на миллион) во время ледниковых периодов и 280 частей на миллион во время межледниковых периодов тепла. Однако после промышленной революции количество CO2 увеличивалось в 100 раз быстрее, чем при завершении последнего ледникового периода, по данным Национального управления по исследованию океана и атмосферы (NOAA).

Фторированные газы, то есть газы, к которым был добавлен элемент фтор, включая гидрофторуглероды, перфторуглероды и гексафторид серы, образуются в ходе промышленных процессов и также считаются парниковыми газами.Хотя они присутствуют в очень малых концентрациях, они очень эффективно улавливают тепло, что делает их газами с высоким «потенциалом глобального потепления» (ПГП).

Хлорфторуглероды (ХФУ), которые когда-то использовались в качестве хладагентов и аэрозольных пропеллентов, пока они не были выведены из обращения в соответствии с международным соглашением, также являются парниковыми газами.

На степень влияния парникового газа на глобальное потепление влияют три фактора:

  • Его концентрация в атмосфере.
  • Как долго он остается в атмосфере.
  • Его потенциал глобального потепления.

Углекислый газ оказывает значительное влияние на глобальное потепление, отчасти из-за его большого количества в атмосфере. По данным EPA, в 2016 году выбросы парниковых газов в США составили 6 511 миллионов метрических тонн (7 177 миллионов тонн) эквивалента углекислого газа, что равняется 81 проценту всех парниковых газов антропогенного происхождения, что на 2,5 процента меньше, чем годом ранее. Кроме того, CO2 остается в атмосфере в течение тысяч лет.

Однако, по данным EPA, метан примерно в 21 раз эффективнее поглощает излучение, чем CO2, что дает ему более высокий рейтинг GWP, хотя он остается в атмосфере всего около 10 лет.

Источники парниковых газов

Некоторые парниковые газы, такие как метан, образуются в результате сельскохозяйственных работ, включая навоз домашнего скота. Другие, такие как CO2, в основном являются результатом естественных процессов, таких как дыхание, и сжигания ископаемых видов топлива, таких как уголь, нефть и газ.

Согласно исследованию, опубликованному Университетом Дьюка, второй причиной выброса CO2 является вырубка лесов. Когда деревья убивают для производства товаров или тепла, они выделяют углерод, который обычно сохраняется для фотосинтеза.Согласно Глобальной оценке лесных ресурсов 2010 года, в результате этого процесса в атмосферу ежегодно попадает около миллиарда тонн углерода.

Согласно данным EPA, лесное хозяйство и другие методы землепользования могут компенсировать некоторые из этих выбросов парниковых газов.

«Пересадка помогает уменьшить накопление углекислого газа в атмосфере, поскольку растущие деревья поглощают углекислый газ посредством фотосинтеза», - сказал Дейли Live Science. «Однако леса не могут улавливать весь углекислый газ, который мы выбрасываем в атмосферу в результате сжигания ископаемого топлива, и сокращение выбросов ископаемого топлива по-прежнему необходимо, чтобы избежать накопления в атмосфере.«

Во всем мире выбросы парниковых газов являются источником серьезной озабоченности. По данным НАСА, с начала промышленной революции до 2009 года уровни CO2 в атмосфере увеличились почти на 38 процентов, а уровни метана - на колоссальные 148 процентов. , и большая часть этого увеличения пришлась на последние 50 лет. Из-за глобального потепления 2016 год был самым теплым годом за всю историю наблюдений, а 2018 год станет четвертым самым теплым годом, а 20 самых жарких лет за всю историю наблюдений пришли на период после 1998 года. , по данным Всемирной метеорологической организации.

«Наблюдаемое нами потепление влияет на атмосферную циркуляцию, которая влияет на характер осадков во всем мире», - сказал Йозеф Верне, доцент кафедры геологии и планетологии Университета Питтсбурга. «Это приведет к большим экологическим изменениям и вызовам для людей во всем мире».

Будущее нашей планеты

Если нынешние тенденции сохранятся, ученые, правительственные чиновники и растущее число граждан опасаются, что наихудшие последствия глобального потепления - экстремальные погодные условия, повышение уровня моря, исчезновение растений и животных, закисление океана, серьезные изменения климата и беспрецедентные социальные потрясения - неизбежны.

В ответ на проблемы, вызванные глобальным потеплением из-за парниковых газов, правительство США в 2013 году разработало план действий по борьбе с изменением климата. А в апреле 2016 года представители 73 стран подписали Парижское соглашение, международный пакт по борьбе с изменением климата путем инвестирования в устойчивое низкоуглеродное будущее в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата (РКИК ООН). США были включены в число стран, которые согласились с соглашением в 2016 году, но начали процедуру выхода из Парижского соглашения в июне 2017 года.

По данным EPA, выбросы парниковых газов в 2016 году были на 12 процентов ниже, чем в 2005 году, отчасти из-за значительного сокращения сжигания ископаемого топлива в результате перехода на природный газ из угля. Более теплые зимние условия в те годы также уменьшили потребность многих домов и предприятий в повышении температуры.

Исследователи во всем мире продолжают работать над поиском способов снижения выбросов парниковых газов и смягчения их последствий. По словам Дины Лич, доцента биологических и экологических наук Университета Лонгвуд в Вирджинии, одно из возможных решений, которое изучают ученые, - это высосать углекислый газ из атмосферы и закопать его под землей на неопределенное время.

«Что мы можем сделать, так это минимизировать количество углерода, которое мы помещаем туда, и, как результат, минимизировать изменение температуры», - сказал Лич. «Однако окно действий быстро закрывается».

Дополнительные ресурсы :

Эта статья была обновлена ​​3 января 2019 г. участником Live Science Рэйчел Росс.

.

Список парниковых газов - WorldAtlas

Автор: Эмбер Париона, 25 апреля 2017 г., в Environment

CO2 from fossil fuel consumption is the best known source of greenhouse gas, though certainly not the only one. CO2 от потребления ископаемого топлива является наиболее известным источником парниковых газов, хотя, конечно, не единственным.

11. Водяной пар (h3O) -

Водяной пар, хотя это звучит достаточно невинно, является одним из основных факторов глобального изменения климата.Интересно, что водяной пар напрямую не выделяется в результате деятельности человека. Это реакция на уже повышающиеся температуры. По мере того, как атмосфера становится выше, скорость испарения воды также увеличивается. Этот водяной пар имеет тенденцию оставаться в нижних слоях атмосферы, где он поглощает инфракрасное излучение и толкает его к поверхности земли, в результате чего и без того высокие температуры продолжают расти.

10.Озон (O3) -

Озон имеет две формы: стратосферную и тропосферную. Озон в стратосфере возникает естественным образом. Однако тропосферный озон - это парниковый газ, который способствует изменению климата. Люди производят этот газ с помощью промышленных предприятий, химических растворителей и сжигания ископаемого топлива. До индустриализации тропосферный озон был сконцентрирован на уровне 25 частей на миллиард в атмосфере. Сегодня это примерно 34 детали.Когда O3 смешивается с оксидом углерода, это соединение приводит к образованию смога. Использование общественного транспорта, отказ от пестицидов и покупка натуральных чистящих средств - все это способы уменьшить производство озона.

9.Трифторид азота (NF3) -

Трифторид азота производится промышленными газовыми и химическими компаниями. Он признан Киотским протоколом как парниковый газ, который способствует глобальному изменению климата. Срок службы в атмосфере составляет от 550 до 740 лет. В соответствии с этим экологическим соглашением страны-участницы обязались сократить выбросы этого газа.

8.Гексафторид серы (SF6) -

Гексафторид серы является электрическим изолятором и обычно используется в виде сжиженного сжатого газа. Он не очень растворим в воде, но растворяется в органических растворителях. Его продолжительность жизни в атмосфере составляет 3200 лет, а потенциал глобального потепления в 23 900 раз сильнее, чем углекислый газ. SF6 считается одним из самых опасных известных парниковых газов. Он запрещен в качестве индикаторного газа и ограничен применениями высокого напряжения.Кроме того, Министерство энергетики США устранило утечки в нескольких лабораториях, тем самым снизив выбросы на 35 000 фунтов в год.

7.Гексафторэтан (C2F6) -

Гексафторэтан - это фторуглерод, который используется в полупроводниковой промышленности и образуется из побочных продуктов процессов производства алюминия. Продолжительность жизни в атмосфере составляет 10 000 лет, а потенциал глобального потепления - 9 200. До индустриализации этого газа в атмосфере не было. Люди могут задохнуться вокруг этого газа при воздействии высоких концентраций.

6.Тетрафторметан (CF4) -

Тетрафторметан - негорючий газ, относящийся к семейству фторуглеродов. Использование процесса Холла-Эру в производстве алюминия приводит к получению этого газа. Кроме того, он используется как хладагент. CF4 - это сильный парниковый газ, который способствует изменению климата и имеет время жизни в атмосфере 50 000 лет. В настоящее время считается, что из-за его низкого уровня концентрации в атмосфере он не оказывает значительного радиационного воздействия, которое приводит к повышению глобальной температуры.Однако его присутствие постоянно увеличивается, что приведет к глобальному потеплению. Он не разрушает озон.

5.Хлордифторметан (CHClF2) -

Хлордифторметан относится к семейству газов гидрохлорфторуглеродов и чаще всего используется в качестве хладагента и пропеллента. Этот парниковый газ вносит значительный вклад в разрушение озонового слоя и глобальное потепление. Несмотря на опасность, связанную с его использованием, CHCIF2 иногда используется вместо других газов с более высоким озоноразрушающим потенциалом. Однако Европейский Союз запретил производство этого газа, а также запретил его использование для обслуживания холодильного оборудования и оборудования для кондиционирования воздуха, и разрешен только рециркулируемый хлордифторметан.Любое сломанное оборудование необходимо заменить на другое, не содержащее этого газа. Такая же стратегия сокращения и постепенного отказа использовалась в Соединенных Штатах.

4.Дихлордифторметан (CCl2F2) -

Дихлордифторметан, чаще всего называемый фреоном-12, используется в аэрозольных баллончиках и в качестве хладагента. Считается, что его жизнь в атмосфере составляет около 102 лет, когда оно окончательно разрушается под действием солнечной радиации. К сожалению, его деградация фактически позволяет разрушить озоновый слой. Слабый или нарушенный озоновый слой позволяет солнечным ультрафиолетовым лучам проникать в атмосферу Земли.До 1994 года он был популярным выбором для автомобильных кондиционеров. После Монреальского протокола производство этого парникового газа стало незаконным из-за его разрушительного воздействия на озоновый слой. Однако его все еще разрешено использовать в качестве антипирена на воздушных транспортных средствах и на подводных лодках.

3.Закись азота (N2O) -

Закись азота образуется в результате промышленного производства, сжигания ископаемого топлива и разложения сельскохозяйственных удобрений. Кроме того, это происходит естественным образом в земле. Закись азота - это сжатый сжиженный газ, срок службы в атмосфере которого составляет 114 лет, а потенциал глобального потепления в 298 раз выше, чем у двуокиси углерода. Это означает, что он улавливает тепло в атмосфере Земли с гораздо большей скоростью, чем углекислый газ.Этот газ имеет несколько применений, в том числе как окислитель ракетного двигателя, как ускоритель скорости двигателя внутреннего сгорания, как пропеллент для аэрозольных баллончиков, а также как обезболивающее и обезболивающее в стоматологии, родах и хирургии по всему миру. Правительство США согласилось анализировать, измерять и публиковать измерения выбросов парниковых газов в соответствии с Рамочной конвенцией Организации Объединенных Наций об изменении климата. Около 75% выбросов в США приходится на сельскохозяйственную промышленность. Несмотря на опасность для окружающей среды, ожидается, что закись азота останется одним из крупнейших выбросов парниковых газов в будущем.

2. Метан (Ch5) -

Метан в 25 раз сильнее углекислого газа с точки зрения его потенциала глобального потепления.Он также имеет срок службы 12 лет. Этот газ появляется как естественным образом, так и в результате деятельности человека. Естественно, он происходит из водно-болотных угодий, вулканов, насекомых и животных, производящих метан, а также на дне океана. Человеческая деятельность, такая как сжигание ископаемого топлива, разведение скота, выращивание риса и захоронение на свалках, способствует увеличению присутствия этого газа. При контроле земля имеет естественные поглотители, которые помогают поглощать метан, однако избыточная человеческая продукция, как оказалось, превышает то, что Земля может естественным образом поглотить.Доиндустриальный уровень составлял примерно 700 частей на миллиард. Сегодня эта цифра увеличилась до 1870 частей на миллиард.

1. Двуокись углерода (CO2) -

Возможно, самый известный в мире парниковый газ - это углекислый газ.Он естественным образом встречается в вулканах, горячих источниках, грунтовых водах и ледниках. Поскольку эти геологические образования выделяют углекислый газ, растения полагаются на него для фотосинтеза, который приводит к производству кислорода. Сегодня деятельность человека, такая как сжигание ископаемого топлива, производство цемента, вырубка лесов, сельское хозяйство и развитие, способствует увеличению производства углекислого газа. В настоящее время в атмосфере содержится 388 500 частей на миллиард, что на 108 500 больше, чем до индустриализации. При такой высокой концентрации в атмосфере растения не могут справиться, удаляя его из воздуха.Поскольку этот газ поглощает и излучает инфракрасное излучение, он вносит значительный вклад в глобальное потепление.

.

труб и цистерн | Проблемы с решениями

Q.1. Трубы M и N, соединенные вместе, могут заполнить цистерну за 6 минут. Если M требуется на 5 минут меньше, чем N, чтобы заполнить цистерну, то время, за которое только N может заполнить цистерну, будет

а) 15 мин

б) 10 мин

в) 30 мин.

г) 25 мин

Ответ и объяснение

Sol: опция A
Пояснение: Пусть труба M заполнит бачок за x минут.
Таким образом, труба N заполнит цистерну за (x + 5) минут.
Теперь 1 / x + 1 / (x + 5) = 1/6 → x = 10
Таким образом, труба M может заполниться за 10 минут, поэтому N может заполниться за 10 + 5 = 15 минут.

Q.2. Наполнение бачка из-под крана обычно занимает 10 часов, но из-за одной открытой выпускной трубы это занимает на 5 часов больше. За сколько часов выпускная труба опустошит полную цистерну?

а) 20 часов

б) 24 часа

в) 30 часов

d) Ни один из этих

Ответ и объяснение

Sol: Опция C
Пояснение: Поскольку цистерна заполнена за 10 часов, следовательно, за 1 час, заполненная часть → 1/10
Теперь, благодаря выпускной трубе, заполненная часть за 1 час = 1/15 часть
Часть бачка опорожнено из-за утечки за 1 час = 1/10 - 1/15 = 1/30
Таким образом, утечка опустошит полный бачок за 30 часов.

Q.3. Две трубы могут заполнить резервуар за 12 и 20 часов соответственно. Трубы открываются одновременно, и выясняется, что из-за протечки на дне для заполнения цистерны требуется 30 минут. Если цистерна заполнена, через какое время утечка опустошит ее?

а) 120 часов

б) 100 часов

c) 115 часов

г) 112 часов

Ответ и объяснение

Sol: Опция A
Пояснение: Цистерна заполнена обеими трубами за один час = 1/12 + 1/20 = 2/15-е
Таким образом, обе трубы заполнили резервуар за 15/2 часа.
Теперь, из-за утечки, обе трубы заполнили цистерну за 15/2 + 30/60 = 8 часов.
Следовательно, из-за утечки, заполненная часть за один час = 1/8
Следовательно, часть цистерны опорожнена из-за утечки за один час = 2 / 15-1 / 8 = 1/120-ая
∴ Через 120 часов утечка опустеет цистерна.

Q.4. Две трубы P и Q могут заполнить цистерну за 36 и 48 минут соответственно. Обе трубы открываются вместе, через сколько минут следует выключить Q, чтобы цистерна наполнилась за 24 минуты?

а) 6 мин.

б) 16 мин

в) 10 мин

г) 12 мин

Ответ и объяснение

Sol: Опция B
Пояснение: P может заполнить цистерну за 36 минут, поэтому за 1 минуту P может заполнить цистерну = 1/36 часть
За 24 минуты P может заполнить цистерну = 24 / 36 = 2/3.Оставшаяся часть = 1- 2/3 = 1/3-я
Поскольку Q может заполнить полную цистерну за 48 минут, так он заполнит
1/3-ю часть за 16 минут.

Q.5. Две трубы A и B могут заполнить резервуар за 20 и 16 часов соответственно. Только труба B остается открытой в течение 1/4 времени, а обе трубы остаются открытыми все оставшееся время. Через сколько часов бак будет полным?

а) 18 1/3 часа

б) 20 часов

c) 10 часов

г) 12 1/4 часа

Ответ и объяснение

Sol: Опция C
Пояснение: Пусть требуется время x часов, затем
⇒ x / 16 + 3x / 80 = 1⇒ x = 11 = 10 часов.

Обязательно прочтите статьи о трубах и цистернах

Q.6. Два крана M и N могут наполнять цистерну по отдельности за 30 и 20 минут соответственно. Они начали наполнять цистерну вместе, но кран A отключается через несколько минут, а кран B заполняет остальную часть цистерны за 5 минут. Через сколько минут кран M был выключен?

а) 9 мин

б) 10 мин

в) 12 миль

d) Ни один из этих

Ответ и объяснение

Sol: Опция A
Пояснение: Пусть M был выключен через x мин.Затем цистерна, заполненная M в x min + цистерна
, заполненная N в (x + 5) min = 1 ⇒ x / 30 + (x + 5) / 20 = 1 ⇒ 5x + 15 = 60 ⇒ x = 9 min.

Q7. Три наливные трубы A, B и C могут наполнять цистерну отдельно за 12, 16 и 20 минут соответственно. A был открыт первым. Через 2 минуты открыли B, и через 2 минуты после начала B открыли C. Найдите время, когда цистерна будет заполнена после открытия C?

a) 3 21/47 мин

б) 4 1/2 мин

в) 3 9 15/16 мин

d) Ни один из этих

Ответ и объяснение

Sol: Опция A
Пояснение: Пусть цистерна заполнится через x мин.Затем часть, заполненная буквой A в x min + часть, заполненная буквой C в (x-2) min + часть, заполненная буквой C в (x-4) min = 1
⇒ x / 12 + (x-2) / 16 + ( x-4) / 20 = 1 ⇒ 47x - 78 = 240⇒ x = 162/47 = 321/47 мин

Q8. Цистерна, заполненная за 20 часов тремя трубами A, B и C. Труба C в два раза быстрее, чем B, и B в три раза быстрее, чем A. Сколько времени потребуется только трубке A, чтобы заполнить резервуар?

а) 200 часов

б) 205 часов

c) 352 часа

г) Не может быть определено

Ответ и объяснение

Sol: Опция A
Пояснение: Предположим, что для заполнения резервуара только по трубе A требуется x часов.
Тогда для заполнения резервуара по трубам B и C потребуется x / 3 и x / 6 часов соответственно.
Следовательно, 1 / x + 3 / x + 6 / x = 1/20 ⇒ 10 / x = 1/20 ⇒ x = 200 часов

Q9. Три крана P, Q и R могут заполнить бак за 10, 20 и 30 часов соответственно. Если P открыт все время, а Q и R открыты каждый по одному часу каждый поочередно, то бак будет полным:

а) 6 часов

б) 6.5 часов

c) 7 часов

г) 7,5 часов

Ответ и объяснение

Sol: опция C
Пояснение: 1 час работы (P + Q) = (1/10 + 1/20) = 3/20
(A + C) 1 час работы = (1/10 + 1/30) = 2/15
Часть заполнена за 2 часа = (3/20 + 2/15) = 17/60
Часть заполнена за 6 часов = (3 × 17/60) = 17 / 20
Оставшаяся часть = (1-17 / 20) = 3/20
Теперь настала очередь P и Q, и часть 3/20 заполняется P и Q за 1 час.
Следовательно, Общее время, необходимое для заполнения бака = (6 + 1) час = 7 часов

Q10. Бачок имеет протечку, которая опорожняет его за 10 часов, открывается кран, пропускающий 4 литра в минуту в бак, и теперь он опорожняется за 12 часов. Вместимость бака составляет:

а) 648 литров

б) 1440 литров

c) 1200 литров

г) 1800 литров

Ответ и объяснение

Sol: Option B
Пояснение: Пусть скорость велосипеда будет x км / час.Пусть скорость электромобиля будет y км / час
∴ 200 / x + 600 / y = 10 ∴ 300 / x + 500 / y = 11
Заполненная часть за 1 час
= (1 / 10-1 / 12) = 1/60
Время, затраченное на наполнение бака = 60 часов
Вода, заполненная за 60 часов = 4 * 60 * 60 = 1440 литров

.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.