ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Теплодатчики для теплиц


Принцип действия и виды терморегуляторов для теплиц — 1poparnikam.ru

Терморегулятор для теплиц необходим для обеспечения комфортных условий роста и развития различных культур. Одной установки оборудования, обеспечивающего обогрев, мало. Температуру, до которой нагреваются воздух, вода и почва, нужно обязательно круглосуточно контролировать и регулировать. Дело в том, что, например, днем температура в теплице должна быть более высокой, а ночью — понижаться. Соответственно, должен меняться и режим работы отопительной системы. Зависит он от внешних условий, температуры окружающего воздуха.

Терморегулятор в теплице позволяет выращивать растения в любую погоду, обеспечиваю комфортную температуру.

Контролироваться и регулироваться должна не только температура воздуха внутри теплицы, но и температура грунта в ней. Соотношение этих двух параметров определяет интенсивность роста и развития растений, поскольку от него напрямую зависит активность усвоения ими полезных веществ. Для большинства растений наиболее комфортными являются следующие их значения:

  • для воздуха 16-25°С;
  • для грунта 13-25°С.

Необходимость в контроле и регулировании температуры возникает и летом. Обеспечение необходимых условий в этом случае обычно осуществляется с помощью системы регулируемой вентиляции.

Принцип действия терморегулирующих устройств

Схема терморегулирования теплицы.

Принцип действия конструкций такого рода достаточно прост: на исполнительное устройство поступает сигнал, который в зависимости от вида этой установки может вызвать следующие ее реакции:

  • если это отопительная система, увеличить или уменьшить ее мощность;
  • включить или выключить принудительную вентиляцию;
  • открыть или закрыть шторки естественной вентиляции для проветривания;
  • включить или выключить систему подогрева почвы и воды для полива.

Возникновение этого сигнала обеспечивается с помощью реле термостата, получающего сведения от датчиков, установленных в теплице. Благоприятный для растений микроклимат определяется не только соотношением температуры и освещенности, но и величиной влажности воздуха. По этой причине самой совершенной будет система, обеспечивающая автоматическое регулирование параметров с учетом показаний датчиков трех видов: температуры, освещенности и влажности. В качестве датчиков чаще всего используются следующие устройства:

Схема подключения терморегулятора.

  1. Как температурный датчик чаще всего применяется термистор (терморезистор). В самодельных конструкциях в качестве термочувствительного элемента нередко используется p-n переход полупроводникового диода или транзистора, поскольку его прямое сопротивление зависит от температуры.
  2. Датчиком освещенности чаще всего служит фоторезистор, но в самодельных конструкциях иногда используется все тот же p-n переход, обратное сопротивление которого сильно зависит от освещенности. Для доступа света к переходу у транзистора обычно срезают колпачок металлического корпуса, а у диода смывают краску со стеклянного.
  3. Промышленные датчики третьего необходимого параметра часто используют зависимость от влажности диэлектрической проницаемости среды между обкладками конденсатора. Кроме того, может использоваться изменение сопротивления при контакте с влажным воздухом таких веществ, как оксид алюминия. Используется и факт изменения длины синтетического волокна или обезжиренного человеческого волоса при изменении относительной влажности воздуха и так далее. В самодельных устройствах таким датчиком часто служит кусок фольгированного стеклотекстолита с прорезанными в нем канавками. При увеличении влажности его сопротивление уменьшается.

Вернуться к оглавлению

Виды промышленных терморегуляторов

Терморегуляторы для теплиц различной степени сложности могут быть приобретены в соответствующих магазинах, или собраны своими руками (при наличии необходимых навыков).

Виды терморегуляторов.

Сегодня выпускаются три вида моделей этих устройств:

  1. Сенсорные регуляторы температуры — достаточно дорогие многофункциональные системы. Предназначены преимущественно для больших тепличных комплексов. Имеется возможность задания множества программ, управляющих работой отопительной системы. Могут учитывать даже выделение тепла преющим навозом. Имеют большое количество разнообразных функций, обычно снабжаются дисплеем с подсветкой.
  2. Электронные термостаты — устройства, количество функций которых заметно меньше, чем у регуляторов предыдущего класса, но и цена, соответственно, ниже. Обычно снабжены переключателем, дающим возможность установить определенный режим обогрева. Для удобства нередко дополняются жидкокристаллическим дисплеем с необходимой информацией.
  3. Механические термостаты — самые простые по своему устройству, но зачастую не менее эффективные приборы, чем их электронные аналоги. Приобретать, например, для небольшой дачной теплицы дорогостоящую аппаратуру экономически нецелесообразно. А вот недорогой механический терморегулятор для нее будет самым подходящим вариантом.

Приобретая любое из этих устройств, следует особое внимание обратить на такие их характеристики:

  • мощность обслуживаемой отопительной установки и ее возможности;
  • специфичность установок, которые могут потребоваться;
  • все ли требуемые функциональные возможности имеет этот прибор;
  • удобство управления и подходящий внешний вид.

Вернуться к оглавлению

Самодельные терморегуляторы

Одной из самых простых является система гидравлического или пневматического вентилирования. Она может быть устроена следующим образом: две емкости с воздухом или жидкостью, соединенные цилиндром с поршнем, расположены внутри и снаружи теплицы. При повышении температуры воздуха в теплице нагревается и расширяется жидкость или воздух во внутренней емкости. Поршень перемещается в сторону наружной, открывая при этом фрамугу. Когда воздух остывает, наблюдается обратный процесс.

Гидравлическое терморегулирование теплицы.

Основные достоинства такой системы: надежность, долговечность, простота, отсутствие необходимости в источниках питания. Основные недостатки:

  • конструкцию нельзя применить к боковым форточкам;
  • большая тепловая инерция может сказаться при резкой смене погоды.

Примерно так же работает биметаллическая система. Специальная пластинка делается из двух полосок металла с различными коэффициентами теплового расширения. При повышении температуры она выгибается в сторону полоски, которая меньше расширяется. Основной минус — недостаточная мощность, из-за чего подобную систему чаще применяют как термодатчик, включающий или отключающий цепь исполнительного механизма (например, принудительной вентиляции).

Основой электрической конструкции обычно является схема с двумя устойчивыми состояниями — двухпозиционный релейный (переключающий) элемент. Чаще всего используется триггер Шмидта, на вход которого включается один из упомянутых выше датчиков (обычно тепловой). Иногда используются комбинированные датчики. Например, для учета и температуры и освещенности последовательно включаются термо- и фоторезистор, а на вход триггера подается аналоговый сигнал с точки их соединения.

При некотором значении температуры (комбинации температуры и освещенности) триггер опрокидывается, срабатывает реле и включается исполнительный механизм. При повышении температуры до заданного значения процесс происходит в обратном направлении и исполнительный механизм отключается.

Основной недостаток этой системы — зависимость от источника электроснабжения. Отключение электроэнергии в холодный или, наоборот, в очень жаркий день может привести к гибели растений. Нужны резервные источники питания: солнечная или аккумуляторная батарея и тому подобное.

Систем автоматического регулирования теплового режима в теплицах достаточно много, нужно только выбрать наиболее подходящую из них.

Возможно и самостоятельное изготовление регулятора температуры в теплице, но для этого требуются определенные инженерные знания, умения и навыки.

Системы и технологии управления теплицами

Новые инновации в системах и технологиях управления теплицами

Различное оборудование для автоматизации теплиц, такое как компьютерное программное обеспечение и датчики, подключено и используется для сбора данных в теплице с целью повышения урожайности. Эта новая инновационная технология ( IoT или Интернет вещей ) использует многочисленные датчики, подключенные к центральному компьютеру климат-контроля теплицы.В сенсорной системе теплицы есть элементы, которые контролируют и контролируют температуру, влажность, электропроводность, pH, углекислый газ (c02), запотевание, затенение и считывают внешние погодные условия с помощью метеостанции.

Собранная информация помогает контролировать не только определенные элементы внутренней среды выращивания, но также экономит время, затраты на энергию и рабочую силу. Мы даже включаем в наше программное обеспечение график орошения, чтобы контролировать до 5 различных формул корма и расширяемые зоны.Сегодня производители инвестируют в тепличные технологии и средства контроля, чтобы гарантировать, что их урожай будет приносить здоровый урожай и будет работать более продуктивно, что, в свою очередь, означает улучшение финансовых показателей компании.

Принципы сенсорной системы для теплиц

Датчик - это любой инструмент, который измеряет некоторые химические или физические характеристики и преобразует результаты в электрический сигнал, собираемый главным компьютером автоматизации, а затем эти данные могут быть легко прочитаны и интерпретированы производителем.Автоматизация может упростить выращивание с помощью большого количества инструментов, чтобы быть более точным производителем и обеспечить подачу всех элементов к культуре, которую он ищет.

Тем не менее, пользователь, фермер, всегда требует от вас, чтобы установить лимиты, составить графики и составить собственные формулы кормления, автоматизированное программное обеспечение помогает контролировать все, что вам нужно делать вручную, например, открывать вентиляционное отверстие и поддерживать внимательно следить за всеми значениями данных.Например, если pH воды станет слишком высоким, наше программное обеспечение вызовет тревогу, прежде чем вам придется проверять pH самостоятельно или с помощью другого полуавтоматического датчика. С нашим Climate Manager ™ все данные и элементы управления становятся централизованными, чтобы упростить для вас, например, мониторинг и ввод данных пользователем.

Больше возможностей для автоматизации теплиц

  1. Внешняя метеостанция

Хорошо, мы не можем контролировать погоду на улице, было бы неплохо, правда? Но наличие некоторых приборов на крыше теплицы в виде профессиональной метеостанции позволяет считывать все внешние погодные условия, такие как температура, солнце, температура, ветер и дождь.Все это влияет на теплицу и на то, как вы должны вносить изменения в теплицу, опять же, все эти сигналы можно считывать, затем запускать управление в теплице, если уровень солнечной энергии становится слишком высоким, запускать, например, открытие всех вентиляционных отверстий .

  1. Температурные и влажностные условия во всех отделениях теплицы

Температура в теплице повышается при ярком солнечном свете.Это повышение температуры называется «солнечным усилением». Чтобы попасть в теплицу, свет должен проходить через стекло или пластик теплицы, при этом свет теряет часть своей энергии, которая преобразуется в тепло. Без системы охлаждения температура и влажность в теплице могут подняться выше + 45 ° C. Успешная оптимизация окружающей среды в теплице означает противодействие неблагоприятным воздействиям внешней среды с помощью надлежащих средств управления теплицей и автоматизации, обеспечивающих оптимальные уровни температуры и влажности для здоровья и роста растений.

  1. Вентилятор, Co2, HID-освещение, затенение, туман и управление подушечками

Благодаря расширяемому контролю и модулям для нашего оборудования для контроля теплиц нет предела тому, что вы можете автоматизировать или контролировать. Вентиляторы, углекислый газ, освещение и т. Д. Можно настраивать и контролировать с помощью нашего растущего программного обеспечения. Это означает, что у вас будет точный контроль над внутренней средой, чтобы оптимизировать идеальные условия для выращивания вашего урожая.

  1. Программы орошения и распыления

Обеспечьте хорошее кормление культур по графику с точным контролем подачи, наши системы работают с точностью до миллилитра (мл), что означает, что вы сэкономите как на воде, так и на удобрениях. Большинство производителей сообщают, что они ежегодно экономят около 30% на воде и 40% на удобрениях. Это не только означает значительную экономию для растениеводства, но и благодаря тому, что точные формулы используются для выращивания урожая каждый день по надлежащему расписанию, вы также увидите большое увеличение урожайности растений.

Планирование полива с датчиками субстрата

Мы также представили беспроводные датчики, которые измеряют и определяют влажность почвы, чтобы инициировать поливную подкормку ваших культур. У нас может быть до 30 датчиков почвы для измерения температуры, EC и влажности (влажности) прямо в вашей среде выращивания. Это большое общее преимущество, позволяющее измерять и видеть, что происходит на корневом уровне культуры, и вносить любые корректировки в реальном времени для лучшего управления поливом.

  1. Многоступенчатые программы отопления

С помощью многоступенчатого отопления вы можете повышать температуру в теплице с помощью нескольких источников тепла и поэтапно. Название «ступенчатый» контроллер произошло от способности настраивать управление нагревом в несколько этапов. Сценические контроллеры дают два преимущества базовому контролю температуры: автоматическая последовательность операций и дистанционное зондирование и мониторинг.

Одноступенчатый контроллер заменяет несколько термостатов. Органы управления сценой используют один сенсорный элемент для управления функциями нагрева и охлаждения в тепличной зоне. Этот датчик может быть расположен среди растений, в то время как контроллер может быть более удобно и безопасно расположен за пределами растительной среды, чтобы производитель мог отслеживать и изменять значения триггера входа.

Эти контроллеры разделяют работу оборудования для обогрева и охлаждения теплицы на этапы, называемые последовательностью работы.Типичным примером может служить следующая шестиступенчатая система контроля температуры. Половина нагревателей включается при настройке температуры 60 градусов F (16 ° C), а в случае, если они не могут обеспечить необходимое тепло, остальные нагреватели включаются при 58 градусах F. (14 ° C). .

Позвоните нам сегодня о наших системах управления теплицами

Вас интересуют системы и технологии управления теплицами? Вам нужны устройства, которые помогут вам контролировать внутренние и внешние условия окружающей среды? Свяжитесь с одним из наших инженеров-садоводов, чтобы помочь вам спланировать и добиться успеха в вашем следующем коммерческом тепличном проекте.

.

Обогрев теплицы от Рона Куртуса

SfC Home> Физика> Тепловая энергия>

Рона Куртуса (редакция 9 ноября 2014 г.)

A теплица - это здание, которое отапливается солнечным излучением и изолировано для предотвращения потерь от конвекции, теплопроводности и излучения, так что оно может оставаться теплым без внешнего обогрева даже в холодные зимние дни. Такая постройка используется для выращивания растений зимой.

Солнечный свет проходит через стеклянную крышу теплицы для обогрева растений и земли внутри. Предметы, нагретые солнечным светом, излучают инфракрасное излучение.

Эти объекты испускают инфракрасное излучение, которое поглощается или отражается стеклянной крышей, таким образом удерживая тепловую энергию в теплице, а не позволяя ей уйти. Это помогает сохранить тепло в здании.

Вопросы, которые могут у вас возникнуть:

  • Как стеклянная крыша влияет на солнечную радиацию?
  • Как стеклянная крыша влияет на инфракрасное излучение?
  • Как теплица остается теплой ночью?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Стекло пропускает солнечное излучение

Теплица со стеклянными стенами и стеклянной крышей. Иногда вместо стекла используют прозрачный пластик. Одна цель - обеспечить растениям свет, чтобы помочь им расти, а другая цель - сохранить тепло в теплице.

Солнечное излучение или свет Солнца проходит через стекло и нагревает растения, почву и другие предметы внутри здания. Свет почти полностью поглощается темной почвой в горшках с растениями, повышая температуру материалов.

Теплица с солнечным обогревом

Помимо пропускания световой энергии, стеклянные стены и крыша действуют как теплоизолятор, защищая внутреннюю часть от холодного воздуха и ветров за пределами теплицы.

Теплый воздух, нагретый, задерживается в здании за счет крыши и стен. Тепло не передается наружу воздухом конвекция . Стекло допускает лишь небольшую потерю тепла из-за проводимости тепла через его материал.

(Для получения дополнительной информации см. «Теплопередача».)

Стекло предотвращает утечку инфракрасного излучения

Хотя стекло, используемое для теплицы, пропускает через себя видимый свет и коротковолновое инфракрасное излучение, оно не пропускает более длинные инфракрасные волны. Это означает, что излучение не может уйти, вызывая потерю тепла.

Теплица остается теплой

Обычно тепличное стекло пропускает солнечное излучение с длинами волн от 280 до 2500 нм, поглощая инфракрасное или тепловое излучение в диапазоне от 5000 до 35000 нм.

Примечание : нм обозначает нанометр или одну 10-миллионную долю метра (10 -9 метра). В некоторых книгах длина волны обозначается в микронах. Микрон составляет одну миллионную метра (10 -6 метров). Таким образом, длина волны 2500 нм соответствует длине волны 2,5 мкм.

Инфракрасное излучение, которое не проходит сквозь стеклянные стены и крышу теплицы, поглощается материалом. Затем стекло повторно излучает инфракрасное излучение обратно на материал внутри теплицы, таким образом удерживая тепловую энергию внутри здания и поддерживая ее более высокую температуру.

(См. Инфракрасное излучение и Инфракрасное излучение, Газы и парниковый эффект для получения информации по этим вопросам.)

Земля медленно выделяет энергию

Помимо использования почвы в горшках или на земле теплицы в качестве источника хранения тепловой энергии, некоторые теплицы добавляют материалы, такие как контейнеры с водой или баки с песком и камнем, для поглощения и хранения еще большего количества этой энергии в течение дня. . Они помогают поддерживать постоянную температуру в теплице.

Поскольку нагретые материалы испускают инфракрасное излучение, теплая почва теплицы, вода, песок и другие материалы испускают это тепловое излучение с большей длиной волны, чем излучение, которое нагревает материалы. Эта энергия медленно высвобождается даже ночью.

Сводка

Теплица - это здание, которое обогревается солнечным излучением, поэтому в нем может оставаться тепло даже в холодные зимние дни. Свет от Солнца проходит через стеклянную крышу для обогрева растений и земли внутри теплицы.Эти объекты испускают инфракрасное излучение, которое поглощается стеклянной крышей. Тепловая энергия задерживается в теплице, сохраняя тепло в здании.


Будьте добры к окружающей среде


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Лучшие материалы для крыши теплицы - от WiseGeek.com

Физические ресурсы

Книги

Лучшие книги по физике тепла

Книги о теплицах с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если это так, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
heating_greenhouse.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Физические темы

Отопление теплицы

.

3 Способы обогрева теплицы бесплатно

Теплицы могут быть интересной средой для роста. Это связано с тем, что стандартные тепличные материалы, такие как стекло и пластик («остекление»), очень хорошо пропускают свет и тепло и очень хорошо отводят тепло. При такой большой площади застекленной поверхности теплицы обычно перегреваются в течение дня, если их не контролировать. А поскольку стекло и пластик не обеспечивают теплоизоляции, ночью они теряют тепло, что приводит к их замерзанию. Возьмем, к примеру, этот октябрьский день в Боулдере, штат Колорадо: температура в цельностеклянной теплице колебалась от максимума 110 F до минимума 30 F за один день.Растения, как и люди, этого не любят.

Основная задача тепличного выращивания - это стабилизация этих колебаний температуры. Обычно для этого люди направляют энергию через системы отопления или охлаждения в теплицу. Но более разумный и устойчивый способ создания стабильной тепличной среды - использовать избыточную солнечную энергию, поступающую в течение дня, хранить ее и использовать в ночное время. Или, если вы работаете с существующей теплицей, добавьте эффективный обогреватель, который использует дешевое и возобновляемое топливо.Все эти стратегии требуют понимания и исследования и требуют определенных первоначальных затрат, но окупаемость в виде дополнительного роста и долгосрочной экономии того стоит.

Кроме того, помните, что нет более дешевой энергии, чем энергия, которую вам не нужно использовать, поэтому при проектировании новой теплицы строите ее так, чтобы она не требовала большого нагрева и охлаждения. Это означает создание воздухонепроницаемой изолированной конструкции, использование подходящих кровельных материалов и ориентацию теплицы с остеклением, обращенным на юг, откуда исходит весь наш свет в Северном полушарии.Если вы выращиваете в существующей теплице, вы можете, среди прочего, изолировать теплицу и герметизировать воздуховоды. Снижение потребности в энергии до минимума - это всегда первый шаг, затем используйте следующие стратегии.

1) Хранение солнечной энергии в тепловой массе

Самый простой и распространенный способ выровнять температуру в теплице - использовать тепловую массу, также называемую радиатором. Термическая масса - это любой материал, накапливающий тепловую энергию. Большинство материалов делают это в той или иной степени, но некоторые делают это намного лучше, чем другие.Например, вода удерживает примерно в 2 раза больше тепла, чем бетон, и примерно в 4 раза больше, чем почва.


Объединение массы делает две вещи. Во-первых, он поглощает лишнюю энергию в течение дня, создавая охлаждающий эффект. Когда температура падает ночью, он начинает выделять эту энергию, тем самым «нагревая» теплицу. Примечание: хотя я говорю «охлаждение и нагрев», тепловая масса на самом деле не обеспечивает энергию, она просто накапливает ее и высвобождает позже, как аккумулятор.Размер батареи (или количество энергии, которое вы можете сохранить) зависит от теплоемкости материала и вашей массы. Ниже приведена таблица, в которой сравниваются несколько различных источников тепловой массы и их теплоемкости.

Как к

Самый распространенный способ использования термальной массы - это бочки с водой, потому что они обладают такой высокой теплоемкостью. Уложив несколько бочек с водой на 55 галлонов в теплицу, производитель может добавить много тепловой массы. Бочки следует штабелировать под прямыми солнечными лучами, часто на северной стене.Поскольку растениям будет теплее вокруг бочек с водой, поместите более нежные растения, такие как посевные лотки или культуры для теплой погоды, на бочки или рядом с ними. Выращивание с использованием системы аквапоники - симбиотического выращивания рыб и растений - имеет приятное преимущество: аквариум с рыбой увеличивает тепловую массу вдвое. Другие варианты включают в себя строительство теплицы из бетона или камня - например, использование бетонной северной стены или каменного пола. Даже почва на грядках добавит тепловую массу.

Хотя установка и проста в установке, тепловая масса может медленно реагировать.На распространение тепла по теплице требуется больше времени, что снижает его эффективность. Но, учитывая низкую первоначальную стоимость, добавление термальной массы в теплицу является популярным методом продления вегетационного периода. Это может не дать вам круглогодичного роста всего, но, безусловно, вывести вашу теплицу на новый уровень.

2) Установить теплообменник

Чтобы на один шаг превзойти стандартную тепловую массу, вы можете включить теплообменник для циркуляции воздуха с по , являющегося источником массы.У этой идеи много названий. Ее часто называют климатической батареей или системой подземного отопления и охлаждения (SHCS) - название, популяризированное Джоном Крукшенком из sunnyjohn.com. Ceres Greenhouse Solutions, базирующаяся в Боулдере, штат Колорадо, также имеет разновидность системы, называемую системой передачи тепла от земли к воздуху (GAHT).

Существует множество конфигураций, но механизм передачи и хранения энергии всегда один и тот же. Когда теплица в течение дня нагревается, вентилятор нагнетает теплый влажный воздух изнутри теплицы через сеть труб, заглубленных на глубину до 4 футов под землю (большинство систем состоит из пары слоев труб, заглубленных на 4 и 2 фута ниже. поверхность).Падение температуры заставляет водяной пар конденсироваться, и в этом процессе (называемом фазовым переходом) выделяется энергия. Эта энергия хранится в почве, заставляя ее нагреваться. Таким образом, круглый год под теплицей образуется большая масса теплой почвы. Ночью, когда в теплице понижается температура, снова включается вентилятор и забирает тепло из почвы. Это относительно простая, проверенная временем система; Теплообменники земля-воздух используются в домах на протяжении десятилетий.



Теплообменник "земля-воздух" работает очень хорошо по двум причинам: во-первых, доступная масса (размер батареи, как мы упоминали ранее) огромен. Например, под теплицей размером 12 на 16 футов имеется 768 кубических футов почвы, если принять глубину 4 фута. Если вы выровняете всю северную стену той же теплицы двумя рядами по 55 галлонов бочек с водой (16 бочек), их масса будет в общей сложности 118 кубических футов. Это означает, что с учетом объемной теплоемкости, указанной в таблице выше, подземный теплообменник имеет примерно вдвое большую мощность, чем бочки с водой.Более того, потому что теплообменник земля-воздух соединяется с землей и, таким образом, теоретически имеет бесконечную мощность. Чтобы лучше понять это, см. Изображение теплиц CERES здесь.

Во-вторых, поскольку воздух активно проталкивается через «батарею», это увеличивает скорость теплообмена. Более горячий / прохладный воздух распределяется по теплице более равномерно, предотвращая образование холодных карманов. Кроме того, использование вентиляторов позволяет использовать массу, когда вы хотите: термостат включает и выключает вентилятор при определенных заданных температурах.То есть вентилятор начнет закачивать теплый воздух в почву, когда теплица достигнет заданной температуры (скажем, 80 F), и поднимет его обратно, когда она опустится ниже 50 F. Таким образом, подземный теплообменник дает вам некоторый контроль над термическая масса; это все равно что взять тепловую массу и сделать ее умнее.

Варианты

Материал батареи может отличаться. Некоторые люди засыпают территорию под теплицей гравием или камнями вместо земли. Если у вас уже есть теплица или вы не можете проводить земляные работы на своем участке, вы можете создать альтернативный наземный аккумулятор.Вы можете построить утепленную массу из почвы или другого материала, например, ящик из речных камней перед теплицей. Система работает так же, только другое расположение тепловой массы.

3) Используйте эффективный обогреватель на возобновляемых источниках энергии

Вышеупомянутые системы показывают вам, как использовать солнце и накапливать солнечную энергию, что является хорошим первым шагом к естественному отоплению. Если необходимо дополнительное отопление, подумайте об высокоэффективной системе отопления, которая работает на дешевом и возобновляемом топливе.

Одной из распространенных систем, используемых в теплицах, является нагреватель реактивной массы, сверхэффективный вариант дровяной печи. Вместо того, чтобы просто выпускать горячий воздух прямо из дымохода, как это делает стандартная дровяная печь, обогреватель ракетной массы сначала направляет горячий воздух через массу глины, кирпича или камня, прежде чем он истощится. Воздух нагревает массу, которая удерживает тепло, и медленно излучает его обратно в теплицу в течение длительного периода времени, даже после того, как печь погасла.В обогревателе ракетной массы также используется двойная камера сгорания, что делает его намного более эффективным, чем обычная дровяная печь - пара часов горения небольшим количеством дров может обогреть теплицу за ночь. Большинство нагревателей ракетной массы - это системы DIY; вам нужно будет изучить и спроектировать систему, которая подходит для вашей теплицы, используя множество планов и пояснений в Интернете.



Еще одна распространенная тепличная система - это нагреватель компостных куч, который использует магию аэробных бактерий для разрушения органических материалов и выделения отработанного тепла.Как и подземный теплообменник, нагреватель компоста также основан на теплообменнике: вода циркулирует по трубам, проходящим через большую компостную кучу. Из-за аэробного разложения компостная куча может поддерживать температуру 100-160 F. Затем нагретая вода циркулирует по теплице, где она распределяет тепло. Из всех систем эта, вероятно, потребует больше всего усилий, чтобы наладить работу и продолжить работу. Сначала вы должны построить свою компостную кучу из подходящего материала и консистенции, чтобы довести ее до высокой температуры, и продолжать добавлять к ней или восстанавливать кучу по мере ее разложения.Однако большая, правильно построенная свая (см. Рисунок ниже) может обогреть теплицу площадью 1000–2000 кв. Футов на зиму. По этим причинам обогреватели для компоста лучше всего подходят для больших теплиц.

Сводка

Куда идти? В игре участвует несколько факторов:

Каковы ваши цели (сколько места вы пытаетесь обогреть и в какой степени)? Каждая система имеет разную мощность нагрева. Какой контроль вы хотите иметь? (Некоторые системы активны, а некоторые пассивны.(то есть, вы можете запустить нагреватель массы ракеты, но вы мало что можете сделать, чтобы заменить бочки с водой).

С какими ограничениями вы уже работаете? (например, сложные / каменистые почвы исключают возможность использования подземного теплообменника.) Подумайте, сколько места в теплице у вас есть для таких вещей, как бочки с водой. И, что наиболее важно, подумайте о времени и трудозатратах, затраченных на установку каждой системы, а также о текущем времени / трудозатратах, которые могут потребоваться для запуска каждой системы (т. Е. Подземный теплообменник можно автоматизировать, тогда как нагреватель ракетной массы не может быть).Опять же, хотя вам нужно заранее сделать домашнюю работу, лучшая награда, которую вы можете получить, - это теплая оранжерея, производящая свежие продукты всю зиму (и бесплатно!).

(вверху) Фотографии предоставлены Ceres Greenhouse Solutions: трубы в подземном теплообменнике для теплицы 12 x 20. 3D-модель подземного теплообменника под землей.

(В центре) Фото любезно предоставлено Verge Permaculture: обогреватель ракетной массы в теплице.

(Внизу) Фотографии любезно предоставлены Golden Hoof Farm: компостная куча в середине строительства с трубками для аэрации.Готовая компостная куча.


Все блоггеры сообщества MOTHER EARTH NEWS согласились следовать нашим рекомендациям по ведению блога, и они несут ответственность за точность своих сообщений. Чтобы узнать больше об авторе этого сообщения, нажмите на ссылку автора вверху страницы.

.

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских обитателей, например, некоторых моллюсков и кораллов. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.