ТЕПЛИЦЫ И ПАРНИКИ


ТЕПЛИЦЫ И ПАРНИКИ

Выбор теплицы

Основные типы теплиц

Основные типы конструкций

Отдельно стоящие теплицы

Примыкающие теплицы

Парники

Теплые и холодные парники

ВЫБОР МЕСТА ДЛЯ ТЕПЛИЦЫ,
ЕЕ РАЗМЕРА И
ВНУТРЕННЕЙ ПЛАНИРОВКИ

Выбор места для теплицы

Определение размеров теплицы

Планировка помещения теплицы

Конструкция входной двери

МИКРОКЛИМАТ В ТЕПЛИЦЕ
И КОНТРОЛЬ ЗА НИМ

Вода в теплице

Освещение и электричество в теплице

Системы охлаждения, обогрева и вентилирования

Контроль за микроклиматом в теплице летом

Управление микроклиматом в зимнее время

Гидропоника

Инсектициды в теплице

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕПЛИЦЫ

Дерево как строительный материал

Обшивка теплицы

Внешняя обшивка теплицы

Другие материалы для каркаса теплицы

Теплоизоляция теплицы

Гидроизоляция теплицы

Двери теплицы

Альтернативные строительные материалы

Покраска теплицы

ПОКРЫТИЕ ТЕПЛИЦЫ

Прохождение света

Материалы покрытий теплицы

Герметики и герметизирующие прокладки

ФУНДАМЕНТ И ПОЛ ТЕПЛИЦЫ

Типы фундаментов

Типы полов

Изготовление бетонного фундамента и плиты

Сооружение блочного фундамента

Сооружение фундамента сухой кладки

Сооружение кирпичного фундамента

Сооружение каменного фундамента

Сооружение деревянного фундамента

МЕТОДЫ СТРОИТЕЛЬСТВА

Сооружение сборной теплицы

Сооружение самодельной теплицы

Методы строительства с использованием стандартных пиломатериалов

Конструкционные детали теплицы

Установка покрытия

ЭЛЕКТРИЧЕСТВО, САНТЕХНИКА, ОБОГРЕВ

Монтаж электрической сети

Монтаж водопровода

Установка системы обогрева

ПРИНАДЛЕЖНОСТИ ДЛЯ ТЕПЛИЦ

Стеллажи для растений

Полки и грядки

Инструменты и оборудование

Камера для проращивания семян

Стеллаж для выращивания рассады

Стол для пересаживания растений

Места для хранения

Рабочая одежда

Средства борьбы с насекомыми

ПРОЕКТЫ ТЕПЛИЦ

Традиционная теплица

Утепленная теплица

Теплица с наклонными стенами

Теплица со стрельчатыми арками

Примыкающая теплица

Теплица на сваях или на помосте

Арочная или туннелеобразная теплица

Оконная тепличка

Теплица-кладовая

Универсальный парник

Стол для пересаживания растений

Уплотнение посадок в теплице


Как уплотнить посадки в теплице

Для большинства овощеводов вопрос эффективного использования своей теплицы является очень острым. В основном свободного места для посадок не хватает, а помещение хотелось бы использовать максимально, высаживая разнообразные культуры. Мы собрали материал об уплотнённых посадках и с удовольствием поделимся с вами полученной информацией.

ПоказатьСкрыть

Уплотнённые посадки

Для экономии площади тепличного сооружения, повышения урожайности, на грядках целесообразно делать посадки различных культур. На участке сажают несколько видов овощей, оказывающих взаимное положительное воздействие на их рост и развитие.

Для этих целей необходимо учесть характеристики этих растений, их потребности и сроки высадки.

Подобранные для посадки растения не должны пагубно влиять друг на друга. При уплотнении сажают овощи, имеющие разное время созревания плодов и высоту куста.

Длительность плодоношения огородных культур удлиняется, это положительно сказывается на урожае. При грамотной агротехнике растения меньше инфицируются. Но необходимо учитывать, что при уплотнённой посадке количество вносимых в почву подкормок увеличится в 1,5 раза.

Первая оранжерея была разработана в XIII веке, позже обвинённым в колдовстве, знаменитым садовником Альбером Мангусом. Она была построена в Кёльне в роли зимнего сада для королевских приёмов.

Сочетание культур для посадок

Растения для совместных посадок подбирают с учётом их потребностей и характеристик. Светолюбивые овощи будут плохо расти в тени более высоких, поэтому под ними сажают растения, любящие тень. Культуры одного семейства не рекомендуется размещать рядом друг с другом, чтобы избежать взаимного инфицирования.

Важно определиться с выбором основного растения на грядке. Дополнительные культуры обычно подбирают меньшего размера, они должны быть адаптированными под жизненный цикл основного вида. Самыми дружелюбными растениями считаются редис и фасоль.

Шпинат и салат тоже хорошо уживаются с другими растениями.

Картофель и редис любят соседствовать с бобовыми культурами.

Сельдерей прекрасно растёт рядом с томатом, капустой, перцем.

Петрушку можно сеять с помидорами, огурцами, перцем, редисом, земляникой.

Лук не против расти рядом с томатами, огурцами, баклажанами, земляникой.

Но не все культуры хорошо растут рядом друг с другом. Причиной этому являются одинаковые потребности или же противоположные требования к ресурсам. Наиболее агрессивными растениями можно назвать фасоль и фенхель.

Картофель не следует сажать рядом с томатами, огурцами. Не уживается он с тыквой и сельдереем.

Лук плохо соседствует с капустой и бобовыми. Уплотнять грядки можно пряными травами и цветами.

Высаживая растения, необходимо подбирать оптимальную последовательность их посадки, таким образом получая урожай от разных растений круглый год. Для получения ранних овощей и зелени производят весенние посадки, а летние — для остальных культур в течение сезона. В марте можно сажать лук, укроп, редис. В мае высаживают основные культуры. Весной можно добавить теплолюбивые растения. Промежуточные (петрушка, щавель, мята) можно сажать весь период.

Первые теплицы в России появились в период правления Петра І.

Подводя итог, можно сказать, что даже дачник — новичок сможет самостоятельно испробовать метод уплотнённых грядок и добиться хорошего урожая.

Что такое парниковый эффект?

Краткий ответ:

Парниковый эффект - это процесс, который происходит, когда газы в атмосфере Земли задерживают тепло Солнца. Этот процесс делает Землю намного теплее, чем она была бы без атмосферы. Парниковый эффект - одна из вещей, которые делают Землю комфортным местом для жизни.

Посмотрите это видео, чтобы узнать о парниковом эффекте!

Как работает парниковый эффект?

Как можно догадаться из названия, парниковый эффект работает… как оранжерея! Теплица - это здание со стеклянными стенами и стеклянной крышей.Теплицы используются для выращивания растений, таких как помидоры и тропические цветы.

Внутри теплицы остается тепло даже зимой. Днем в теплицу попадает солнечный свет, который согревает растения и воздух внутри. Ночью на улице холоднее, но внутри теплицы остается довольно тепло. Это потому, что стеклянные стены теплицы задерживают солнечное тепло.

Теплица улавливает солнечное тепло в течение дня. Его стеклянные стены задерживают солнечное тепло, благодаря чему растения в теплице остаются в тепле - даже в холодные ночи.Предоставлено: NASA / JPL-Caltech

.

Парниковый эффект действует на Земле примерно так же. Газы в атмосфере, такие как углекислый газ, улавливают тепло, как стеклянная крыша теплицы. Эти удерживающие тепло газы называются парниковыми газами.

Днем сквозь атмосферу просвечивает Солнце. Поверхность Земли нагревается на солнце. Ночью поверхность Земли охлаждается, возвращая тепло в воздух. Но часть тепла удерживается парниковыми газами в атмосфере.Это то, что поддерживает на нашей Земле тепло и уют в среднем 14 градусов по Цельсию.

Атмосфера Земли улавливает часть солнечного тепла, не позволяя ему уйти обратно в космос ночью. Предоставлено: NASA / JPL-Caltech

.

Как люди влияют на парниковый эффект?

Человеческая деятельность меняет естественный парниковый эффект Земли. При сжигании ископаемого топлива, такого как уголь и нефть, в нашу атмосферу попадает больше углекислого газа.

НАСА наблюдало увеличение количества углекислого газа и некоторых других парниковых газов в нашей атмосфере.Слишком много этих парниковых газов может привести к тому, что атмосфера Земли будет улавливать все больше и больше тепла. Это заставляет Землю нагреваться.

Что снижает парниковый эффект на Земле?

Как и стеклянная оранжерея, земная оранжерея полна растений! Растения могут помочь сбалансировать парниковый эффект на Земле. Все растения - от гигантских деревьев до крошечного фитопланктона в океане - поглощают углекислый газ и выделяют кислород.

Океан также поглощает из воздуха много избыточного углекислого газа.К сожалению, увеличение содержания углекислого газа в океане изменяет воду, делая ее более кислой. Это называется закислением океана.

Более кислая вода может быть вредной для многих морских существ, таких как некоторые моллюски и кораллы. Потепление океанов из-за слишком большого количества парниковых газов в атмосфере также может быть вредным для этих организмов. Более теплая вода - основная причина обесцвечивания кораллов.

На этой фотографии изображен обесцвеченный мозговой коралл. Основная причина обесцвечивания кораллов - потепление океанов.Подкисление океана также отрицательно сказывается на сообществах коралловых рифов. Кредит: NOAA

. .

Простая английская Википедия, бесплатная энциклопедия

Теплица (также называемая теплицей или теплицей) - это здание, в котором выращиваются такие растения, как цветы и овощи. Обычно это стеклянная или полупрозрачная пластиковая крыша. Многие теплицы также имеют стеклянные или пластиковые стены. Теплицы нагреваются в течение дня за счет проникновения солнечных лучей, которые нагревают растения, почву и строения. Этот жар постепенно уходит в течение ночи.

Теплицы бывают разных форм и размеров, с разными функциями.У некоторых людей есть небольшие теплицы на заднем дворе или в качестве навесов, прикрепленных к дому, так называемые мини-теплицы или домики для помидоров. Они хотят выращивать семена и саженцы в защищенной среде, а также выращивать растения, которым нужны более теплые условия. У других, желающих расширить жилую площадь, есть пристройки в виде мини-зимних садов. Коммерческие компании обычно имеют большие теплицы для садоводческих целей, но имеют более существенные конструкции для демонстрации растений, куда допускаются посетители.По той же причине в ботанических садах обычно много теплиц с солидными конструкциями.

Многие овощи и цветы выращивают в теплицах в конце зимы и в начале весны, когда еще слишком холодно для выращивания растений на улице. Затем эти растения перемещаются в почву на улице, когда погода становится теплее. Теплицы используются для выращивания сельскохозяйственных культур в холодных странах, таких как Канада. Самая большая группа теплиц в мире находится в Лимингтоне, Онтарио (в Канаде), где около 200 акров (0.8 км²) томатов выращивают в стеклянных теплицах.

Садоводство и выращивание растений в теплицах отличается от выращивания растений на открытом воздухе, так как дождь не может попасть внутрь теплицы, поэтому садовники должны поливать растения. Кроме того, теплицы могут сильно нагреваться от солнечного тепла, поэтому садоводы должны следить за тем, чтобы не было слишком жарко для растений. В теплицах обычно есть вентиляционные отверстия, которые можно открыть, чтобы выпустить излишки тепла. В некоторых теплицах есть электрические вытяжные вентиляторы, которые автоматически включаются, если в теплице становится слишком жарко.В оранжерее растут нежные растения, такие как помидоры, огурцы и баклажаны. [1]

Римские садовники выращивали огурцы в рамах, покрытых промасленной тканью или листами слюды. В 1500-х годах итальянские садовники построили конструкции для тропических растений, которые исследователи вернули в Италию. Жюль Шарль построил первую современную теплицу в Голландии. В 1800-х годах в Англии были построены большие теплицы. Концепция теплицы также появилась в Нидерландах, а затем в Англии в 17 веке.

  1. «Советы по выращиванию в теплицах». Настоящие мужчины сеют . 2018-08-23. Проверено 21 августа 2020.
  • Лес, май (1988) Стеклянные дома: история теплиц, оранжерей и зимних садов . Aurum Press, Лондон, ISBN 0-906053-85-4.
.

парниковых газов | Определение, выбросы и парниковый эффект

Двуокись углерода (CO 2 ) является наиболее значительным парниковым газом. Природные источники атмосферного CO 2 включают выделение газов из вулканов, горение и естественный распад органических веществ, а также дыхание аэробными (потребляющими кислород) организмами. Эти источники уравновешиваются, в среднем, набором физических, химических или биологических процессов, называемых «стоками», которые имеют тенденцию удалять CO 2 из атмосферы.Значительные естественные поглотители включают наземную растительность, которая поглощает CO 2 во время фотосинтеза.

Ряд океанических процессов также действуют как поглотители углерода. Один из таких процессов, «насос растворимости», включает спуск с поверхности морской воды, содержащей растворенный CO 2 . Другой процесс, «биологический насос», включает поглощение растворенного CO 2 морской растительностью и фитопланктоном (маленькими свободно плавающими фотосинтезирующими организмами), живущими в верхних слоях океана, или другими морскими организмами, которые используют CO 2 для строить скелеты и другие конструкции из карбоната кальция (CaCO 3 ).Когда эти организмы умирают и падают на дно океана, их углерод транспортируется вниз и в конечном итоге закапывается на глубине. Долгосрочный баланс между этими естественными источниками и стоками приводит к фоновому, или естественному, уровню CO 2 в атмосфере.

Напротив, деятельность человека увеличивает уровни CO 2 в атмосфере, главным образом, за счет сжигания ископаемого топлива (в основном нефти и угля и, во вторую очередь, природного газа для использования в транспорте, отоплении и производстве электроэнергии) и за счет производства цемента.Другие антропогенные источники включают выжигание лесов и расчистку земель. В настоящее время антропогенные выбросы приводят к ежегодному выбросу в атмосферу около 7 гигатонн (7 миллиардов тонн) углерода. Антропогенные выбросы составляют примерно 3 процента от общих выбросов CO 2 из естественных источников, и эта усиленная углеродная нагрузка в результате деятельности человека намного превышает компенсирующую способность естественных поглотителей (возможно, на 2–3 гигатонны в год) .

вырубка леса Тлеющие остатки участка обезлесенной земли в тропических лесах Амазонки в Бразилии.По оценкам, на чистую глобальную вырубку лесов ежегодно приходится около двух гигатонн выбросов углерода в атмосферу. © Brasil2 / iStock.com

CO 2 соответственно накапливался в атмосфере со средней скоростью 1,4 частей на миллион (ppm) по объему в год в период с 1959 по 2006 год и примерно 2,0 ppm в год в период с 2006 по 2018 год. В целом, эта скорость накопления была линейный (то есть однородный во времени). Однако некоторые нынешние поглотители, такие как океаны, могут стать источниками в будущем.Это может привести к ситуации, когда концентрация CO 2 в атмосфере растет с экспоненциальной скоростью (то есть со скоростью увеличения, которая также увеличивается с течением времени).

Кривая Килинга Кривая Килинга, названная в честь американского климатолога Чарльза Дэвида Килинга, отслеживает изменения концентрации углекислого газа (CO 2 ) в атмосфере Земли на исследовательской станции на Мауна-Лоа на Гавайях. Хотя эти концентрации испытывают небольшие сезонные колебания, общая тенденция показывает, что CO 2 увеличивается в атмосфере. Encyclopdia Britannica, Inc.

Естественный фоновый уровень углекислого газа колеблется во временных масштабах в миллионы лет из-за медленных изменений в дегазации в результате вулканической активности. Например, примерно 100 миллионов лет назад, в меловой период, концентрации CO 2 , по-видимому, были в несколько раз выше, чем сегодня (возможно, около 2000 частей на миллион). За последние 700 000 лет концентрации CO 2 менялись в гораздо меньшем диапазоне (примерно от 180 до 300 ppm) в связи с теми же эффектами земной орбиты, связанными с наступлением и уходом ледниковых периодов эпохи плейстоцена.К началу 21 века уровни CO 2 достигли 384 частей на миллион, что примерно на 37 процентов выше естественного фонового уровня примерно 280 частей на миллион, существовавшего в начале промышленной революции. Уровни атмосферного CO 2 продолжали расти и к 2018 году достигли 410 частей на миллион. Согласно измерениям керна льда, такие уровни считаются самыми высокими по крайней мере за 800 000 лет и, согласно другим источникам данных, могут быть самыми высокими по крайней мере за 5 000 000 лет.

Радиационное воздействие, вызванное двуокисью углерода, изменяется примерно логарифмически в зависимости от концентрации этого газа в атмосфере. Логарифмическое соотношение возникает в результате эффекта насыщения, при котором по мере увеличения концентрации CO 2 становится все труднее дополнительным молекулам CO 2 влиять на «инфракрасное окно» (определенная узкая полоса длин волн в инфракрасном диапазоне). область, не поглощаемая атмосферными газами).Логарифмическое соотношение предсказывает, что потенциал потепления поверхности будет расти примерно на ту же величину при каждом удвоении концентрации CO 2 . При нынешних темпах использования ископаемого топлива ожидается удвоение концентраций CO 2 по сравнению с доиндустриальными уровнями к середине 21-го века (когда концентрации CO 2 , по прогнозам, достигнут 560 ppm). Удвоение концентрации CO 2 будет означать увеличение радиационного воздействия примерно на 4 Вт на квадратный метр.Учитывая типичные оценки «чувствительности климата» при отсутствии каких-либо компенсирующих факторов, это увеличение энергии приведет к потеплению на 2–5 ° C (от 3,6 до 9 ° F) по сравнению с доиндустриальными временами. Общее радиационное воздействие антропогенных выбросов CO 2 с начала индустриальной эпохи составляет примерно 1,66 Вт на квадратный метр.

.

Парниковый эффект - Energy Education

В общем, парниковый эффект относится к любой ситуации, когда короткие волны света проходят через некоторую среду (это может быть стекло или атмосфера) и поглощаются, тогда как более длинные волны инфракрасного излучения проходят через нее. повторно излучаются объектами и затем не могут проходить через среду. Это приводит к улавливанию более длинных волн и более высокой температуре внутри среды. [1]

Что касается климата Земли, парниковый эффект - это нагрев поверхности планеты из-за поглощения уходящего инфракрасного или теплового излучения парниковыми газами в атмосфере, такими как метан, углекислый газ и водяной пар. . [2] Это происходит естественным путем, без каких-либо выбросов человека; наличие парникового эффекта является жизненно важным компонентом пригодной для обитания Земли, поскольку он поддерживает температуру поверхности, пригодную для жизни - без него Земля была бы намного холоднее, со средней температурой около -18 ° C (см. Температура Земли без парниковых газов ). [3] На рисунке 1 показана диаграмма, иллюстрирующая, как естественный парниковый эффект работает на Земле для поддержания комфортной температуры.

Рис. 1. Схема, показывающая, как парниковый эффект работает на Земле. [4]

Хотя парниковый эффект является естественным явлением, есть опасения по поводу того, что известно как усиленный парниковый эффект . Когда люди говорят о парниковом эффекте и изменении климата, обычно говорят о повышенном парниковом эффекте. Этот эффект относится к усиленному нагреву поверхности Земли в результате большего количества парниковых газов, выбрасываемых в атмосферу в результате деятельности человека. [5] Эти парниковые газы улавливают больше исходящей радиации с поверхности Земли, что означает, что меньше уходит в космос и планета нагревается.

Парниковые газы

Рисунок 2. Двуокись углерода может взаимодействовать с инфракрасным излучением, что приводит к дисбалансу излучения, входящего и выходящего из атмосферы. [6]
Основная статья

Природная атмосфера состоит из 78% азота, 21% кислорода, 0,9% аргона и только около 0,1% природных парниковых газов. [5] Несмотря на небольшое количество, эти парниковые газы имеют большое значение - это газы, которые позволяют существовать парниковому эффекту, удерживая некоторое количество тепла, которое в противном случае могло бы уйти в космос.

Однако, присутствуя в более высоких концентрациях в верхних слоях атмосферы, эти парниковые газы способствуют глобальному изменению климата. Причина этого вклада связана с поглощением и повторным испусканием излучения в инфракрасном диапазоне. Люди вводят в атмосферу парниковые газы, которые в противном случае не попали бы туда, что влияет на естественный баланс; см. антропогенные выбросы углерода для получения дополнительной информации.

Уровень вреда, который могут нанести парниковые газы, измеряется их потенциалом глобального потепления.

Температуры

Хотя парниковый эффект обычно связан с негативными последствиями глобального потепления и изменения климата, естественный парниковый эффект фактически необходим для жизни на Земле. Комфортная температура Земли определяется тем, сколько энергии парниковый эффект улавливает на поверхности планеты и сколько он позволяет уйти в космос. Кроме того, температура других планет, которая может сильно различаться, определяется тем, как работают их парниковые эффекты.Температура планеты сильно зависит от состава атмосферы. Это связано с тем, что парниковый эффект оказывает столь значительное влияние.

Температура Земли

основная статья

На Земле температура поддерживается на комфортном уровне, поскольку атмосфера улавливает часть лучистого тепла от Солнца, нагревая поверхность и поддерживая жизнь. Это улавливание осуществляется парниковыми газами в нашей атмосфере, которые поглощают часть инфракрасного теплового излучения и повторно излучают на поверхность Земли, нагревая ее. [2] Этот процесс, как объяснялось выше, является естественным парниковым эффектом и полностью необходим для нашей жизни на этой планете. НАСА сообщило, что средняя температура Земли в результате потепления от парникового эффекта составляет 15 ° C. [7] Это повышение средней температуры начинает наносить вред различным средам.

Температура Земли без парникового эффекта

основная статья

Без влияния парникового эффекта на нашу планету средняя температура поверхности составила бы 255 Кельвинов, что также можно выразить как -18 ° C или 0 ° F. [2] Если бы это было так, вода на Земле замерзла бы и жизнь в том виде, в каком мы ее знаем, не существовала бы. Средняя температура Земли на самом деле составляет примерно 15 ° C, разница значительная! [8]

Парниковый эффект на других планетах

основная статья

Парниковый эффект не одинаков на всех планетах и ​​сильно различается в зависимости от толщины и состава атмосферы.Три планеты, которые показывают, насколько резко условия на планете могут меняться при разных уровнях парникового эффекта, - это Венера, Земля и Марс. Эти планеты иллюстрируют своего рода «эффект Златовласки», означающий, что влияние парникового эффекта на Венеру слишком велико, что делает планету слишком горячей для жизни. И наоборот, парниковый эффект на Марсе слишком мал, и он становится слишком холодным. Земля существует как «подходящая» планета, с парниковым эффектом, оказывающим достаточно влияния, чтобы сделать планету пригодной для жизни.

Глобальное потепление

основная статья

Быстрый рост человеческой деятельности в новейшей истории привел к продолжающимся выбросам большого количества парниковых газов. Хотя они необходимы в атмосфере в меньших концентрациях, повышенное количество углекислого газа, метана и других газов в атмосфере ведет к усилению глобального потепления. Никогда прежде на Земле не наблюдалось такого большого увеличения количества парниковых газов в атмосфере за такое короткое время, и это приводит к значительным изменениям климата Земли. [5]

Усиленный парниковый эффект нарушает климатическое равновесие Земли и приводит к увеличению средних глобальных температур поверхности. Прогнозируется, что это повышение температуры Земли будет иметь серьезные постоянные последствия, такие как изменения количества осадков, циркуляции океана, увеличения числа экстремальных погодных явлений и повышения уровня моря. Эти изменения могут иметь дальнейшие последствия для сельского хозяйства, биоразнообразия и здоровья человека. [5]

Список литературы

  1. ↑ HyperPhysics.(1 мая 2015 г.). Парниковый эффект [Интернет]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/grnhse.html
  2. 2,0 2,1 2,2 Ричард Вольфсон. (26 апреля 2015 г.). Энергия, окружающая среда и климат , 2-е издание. W.W. Нортон и компания. Ошибка цитирования: недопустимый тег ; имя "RE1" определено несколько раз с разным содержанием
  3. ↑ Джон Кук, Хайден Вашингтон. (1 мая 2015 г.). Отрицание изменения климата , 1-е издание.Earthscan.
  4. ↑ Wikimedia Commons. (6 августа 2015 г.). Парниковый эффект Земли [Онлайн]. Доступно: https://upload.wikimedia.org/wikipedia/commons/8/8e/Earth's_greenhouse_effect_(US_EPA,_2012).png
  5. 5,0 5,1 5,2 5,3 NOVA. (6 августа 2015 г.). Усиленный парниковый эффект [Интернет]. Доступно: http://www.nova.org.au/earth-environment/enhanced-greenhouse-effect
  6. ↑ PhET Simulations, Molecules and Light [Online], Доступно: https: // phet.colorado.edu/en/simulation/molecules-and-light
  7. ↑ Джерри Коффи. (7 мая 2015 г.). Температура Земли [Онлайн]. Доступно: http://www.universetoday.com/14516/temperature-of-earth/
  8. ↑ Энциклопедия Земли. (7 мая 2015 г.). Парниковый эффект [Онлайн]. Доступно: http://www.eoearth.org/view/article/153146/
.

Смотрите также

 
Copyright © - Теплицы и парники.
Содержание, карта.